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ABSTRACT

Interval-censored data are common in medical research. Fully parametric models
provide simple and efficient inference for the estimation of survival functions using
interval-censored observations. Inference based on a parametric regression model
requires the complete specification of the probability density function, and there-
fore, correctly specifying the model is crucial, while the regression diagnostic is
a very important step. However, regression diagnostic methods for use with the
interval-censored data have not been completely developed. Here, we developed
a model-checking procedure based on the cumulative martingale residuals for the
interval-censored observations. We employed the conditional expectation of residu-
als for the diagnostics, because the data showing the exact failure time cannot be
obtained for the interval-censoring analyses, and developed the formal resampling-
based supremum-type test and graphical model-checking techniques. A simulation
study demonstrated an excellent performance of the proposed method during the
detection of misspecified functional form of covariates in the finite sample. Further-
more, we used this method for the analysis of the medical checkup data obtained in
Japan.
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1. Introduction

Interval-censoring commonly occurs in practice, e.g., in cancer clinical trials, where
tumor recurrence is often of the primary interest and it is evaluated by using the
periodic computed tomography measurements, and the time-to-recurrence can only
be determined as the interval between two successive measurements. Survival analysis
techniques that provide the statistical methods for the analysis of censored observa-
tions play important roles in medical research and drug development. Among many
types of censored observations, statistical methods for the right-censored data have
been developed the most.

Of the semiparametric models, Cox proportional hazards regression models [1] are
extensively applied in practice for the analysis of the right-censored data. The prefer-
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ence for this model in contrast to the completely parametric model [2] may be due to
the success of the partial likelihood method [1] and the estimation using less model
assumptions, since the parametric model relies on strong assumptions, and therefore,
it requires careful model identification. However, model identification in the presence
of censoring is difficult. Drawing histograms to assess the distributional assumptions
for the censored observations is impossible, and a graphical diagnosis using residuals
is not straightforward.

Inference procedures for various semiparametric models with interval censored data
have been developed, including the Cox proportional hazards model [3,4], the acceler-
ated failure time model [6], the additive hazards model [7], and the linear transforma-
tion model [8]. In general, these approaches are complicated, and the nonparametric
portion of these semiparametric models cannot be estimated well [4,5]. However, the
fully parametric likelihood-based inference is a very simple and attractive alternative,
especially when the primary goal is to estimate the survival or hazards functions [9].
Unfortunately, few methods are available for the checking of model assumptions when
using the interval-censored data. Therefore, we developed here a method to test the
goodness-of-fit (GoF) of the parametric model with the interval-censored data, which
may help overcome some of the difficulties associated with the model identification.

The GoF method has two aspects, the measurement of the overall fit of the model
and the analysis of covariate function correctness [5]. For the overall fit, the GoF
statistics represent the difference between the parametric maximum likelihood estima-
tor and the nonparametric maximum likelihood estimator (NPMLE). Here, an issue for
interval-censoring is the slower convergence of the NPMLE than that of the standard
square-root-n estimators [5]. This is crucial for the stable estimation of the statistics
[10]. The GoF of the overall fit is directly affected since it uses the NPMLE. Sev-
eral researchers have focused on the potential solutions of this issue, e.g., Pan [11]
proposed a two-sample test via multiple imputation with the approximate Bayesian
bootstrap method, while Ren [10] proposed the use of the Anderson-Darling type GoF
test via the resampling method based on m out n bootstraps, which allows the resam-
pling of smaller sample size m (< n). Furthermore, Li and Ma [12] extensively applied
the repeated measurement model with random effects. Alternatively, Nysen et al. [13]
proposed the modified Akaike’s Information Criterion (AIC) for the comparison in a
more general parametric model, instead of the NPMLEs, and the analysis of the model
assumption, which was used for the diagnostics of the competing risk model as well
[14,15].

However, the GoF aimed at measuring the correctness of covariate functions has
been considerably less developed. Here, to obtain the information necessary for the
improvement of the current model, residual analyses have been useful. In the survival
analyses, the distribution of the residuals is naturally skewed, and therefore, the GoF
cannot be diagnosed straightforwardly by simply plotting the residuals. Nevertheless,
many residuals are available for the use in the right-censored regression models, includ-
ing Cox-Snell [16], the adjusted Cox-Snell, and martingale residuals [17] (for further
details on the right-censored data-associated residual analysis, see [18],[19], Collett
[9]). Residual analysis methods have not been studied in the context of the interval-
censored data, since the interval censored data model is not a straightforward exten-
sion of the right-censored data model. Additionally, interval-censoring increases the
ambiguousness of the plots, since the data obtained are not time points but, instead,
time intervals [20].

The residuals are considered random variables and censored observations when the
original event-time data are censored [2]. Accordingly, we determined the residual
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counterparts for the interval-censored data. Here, imputation approach can be used,
but the counterpart from the NPMLE of the interval-censored residuals must be es-
timated again, which again leads to the convergence problem. To overcome this, we
used test statistics with the conditional expectation of the residuals.

Farrington [20] defined the martingale residual for the interval-censored data which
is obtained by using the conditional expectation of the Cox-Snell residuals through
the relationship between the martingale and Cox-Snell residuals. Since a martingale
residual, as defined by Farrington [20], has the asymmetry range and its distributional
property is unclear, plotting these residuals may not be informative. For this, we con-
sidered cumulative residuals for the parametric survival model with the right-censored
data[21]. Their cumulative residuals were shown to be a zero-mean Gaussian process if
the model is true. A previously constructed GoF test can help alleviate the ambiguity
of residual behavior diagnostics and it can be applied for a semi-parametric survival
model with right-censoring as well [22].

In this study, we focus on the parametric proportional hazard (PH) model for
interval-censored data, and developed regression diagnostic techniques based on the
cumulative residuals [21,22] with Farrington’s martingale residuals. Here, we present
the notations and models, and afterward, propose a model-checking procedure. Follow-
ing this, we introduce the results obtained in a simulation study and by applying the
proposed method to a medical examination dataset obtained in the Kouseiren Health
Care Center, Kagoshima, Japan. Finally, we demonstrated theoretically that the pro-
posed cumulative residuals converge to the zero-mean Gaussian process in Appendix.

2. Methods

2.1. Preliminary

Considering T an non-negative random variable representing the failure time of inter-
est, and Z a q-dimensional vector of baseline covariates, the pth element of Z can be
denoted by Z(p). That is, Z⊤=(Z(1), Z(2), ..., Z(q)). For n subjects, with the subscript
i, which is a indicator of subjects, {(Ti, Zi); i = 1, 2, ..., n} are independent and iden-
tically distributed (i.i.d) copies of (T, Z). In the presence of interval censoring, T can
not be observed. Instead, we can observe two time points L and R, and only know the
event has occurred in the time interval, (L,R]. Thus, the observed data is denoted as
(L,R,Z).

There exist several interval censoring schemes. The general one was introduced by
[4,5,8], showing that if we assume that 0 ≤ Y{i,1} < Y{i,2} < ... < Y{i,Ki} ≤ ∞
are ordered examination times for the ith subject. Ki is the maximum examination
times for each subject. If Ki = 1 or 2 for all subjects, then the observation scheme
becomes case-1 or case-2, respectively. For (Li, Ri] as the smallest interval that brackets
Ti, i.e., Li = max {Y{i,k} : Y{i,k} < Ti} and Ri = min {Y{i,k} : Y{i,k} ≥ Ti}. Li = 0
indicates that the ith subject is left-censored, while Ri = ∞ indicates that the subject
is right-censored. The sequence of examination times may not be completely observed;
however, only the values of Li and Ri have to be known, since the likelihood for Ki > 2
can be reduced to those in case-2.
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2.2. Parametric PH model for the interval-censored data

Let the conditional survival function given Z be S(t|Z; θ), where θ is a finite-
dimensional unknown parameter vector. The survival function of the parametric pro-
portional hazard (PH) model can be written as S(t, Z) = {S0(t)}exp(β

⋆⊤Z), where β⋆ is
a vector of regression coefficients and S0(t) is the baseline survival function. One of a
representative parametric survival model is the accelerated failure time (AFT) model,
which is defined as

log T = β0 + β⊤Z + σǫ,

where the unknown parameters can be denoted by θ⊤ = (β0, β⊤, σ), where β⊤ =
(β1, β2, ..., βq) is an unknown regression coefficient vector and σ is an unknown scale
parameter, and ǫ is a random variable with a known distribution. If ǫ follows the stan-
dard extreme value distribution, the T follows the Weibull distribution. The survival
function can be expressed by S(t|Z; θ) = exp(−(te−β⊤Z)1/σ). When σ is fixed 1, the
Weibull model is reduced to the Exponential model. The Weibull AFT model is a
specific form of the parametric PH model for β⋆ = −β/σ and S0(t) = exp(−t1/σ).

Another example of parametric survival model is the piecewise exponential (PE)
model [23]. It is assumued that the hazard rate function is constant for the time
interval, Ij = (τj−1, τj ] where τj (j = 1, 2..., J) is the change point of hazard rate such
as 0 = τ0 < τ1 < ... < τJ−1 < τJ = ∞. The conditional hazard rate function given Z
of the PE model can be defined as

log λ(t|Z) = log λj + β⊤Z

for t ∈ Ij , where λj represents a constant baseline hazard for the t ∈ Ij . The survival
function can be expressed as

S(t|Z; θ) =

J−1
∏

j=1

exp(−λje
β⊤Z(τj − τj−1)− λje

β⊤Z(t− τj−1))

for t ∈ Ij , where θ⊤ = (λ1, λ2, ..., λJ , β
⊤). The parametric PH model is also a

specific form of the PE model for β⋆ = −β and S0(t) = exp(−
∑J

j=1 λjtj) where

tj = max(0,min(τj − τj−1, t− τj−1)).
Suppose that (i) the examination times (L,R) are independent of T conditional on

Z, and (ii) the joint distribution of (L,R,Z) are independent of the parameter interest
θ. Then, the log-likelihood function can be written as

ℓ(θ) =

n
∑

i=1

log{S(Li|Zi; θ)− S(Ri|Zi; θ)}.

Define,

U(θ) =

n
∑

i=1

Ui(θ) =

n
∑

i=1

∂

∂θ
ℓi(θ), (1)
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and

I(θ) =

n
∑

i=1

Ii(θ) =

n
∑

i=1

∂2

∂θ∂θ′
ℓi(θ). (2)

Assuming (i) and (ii), the standard large-sample likelihood theory generally applies
[5]. The true value of θ is represented as θ0, while the maximum likelihood estimator

was designated as θ̂, which can be easily obtained, e.g., by using the standard Newton-
Raphson method.

2.3. Residuals for the interval-censored data

Cox-Snell residuals [16] can be defined as Vi = − logS(Ti|Zi; θ0), and Vi follows the
unit exponential distribution if the fitted model is true. In the presence of censoring,
Vi cannot be calculated. For right-censored observations, residuals for the censored
observation are defined using the conditional expectation of Vi given the observed
data, which is called the adjusted Cox-Snell residual. Farrington [20] argued for the
extension of the adjusted Cox-Snell residuals to the interval-censored observations,
and defined the Cox-Snell residuals for interval-censoring as follows:

rCi (θ0) = rCi (Li, Ri; θ0) = E[Vi|Ti ∈ (Li, Ri], Zi]

=
S(Li|Zi; θ0){1− logS(Li|Zi; θ0)} − S(Ri|Zi; θ0){1− logS(Ri|Zi; θ0)}

S(Li|Zi; θ0)− S(Ri|Zi; θ0)
.

Based on the relationship between the martingale residual and the Cox-Snell residual
for right-censored observations, Farrington [20] defined the martingale residuals as
rLi (θ0) = 1 − rCi (θ0). Interestingly, the martingale residuals corresponds to the score

function for β0, in other words, Ui(βp) = Z
(p)
i rLi (θ0) holds [20]. Its characteristic is

common to the right-censored data. Another common characteristic is E[rLi (θ0)] = 0,
which is valid for the correctly specified fitted model. Thus, we proposed a regression
diagnostic method aggregating the Farrington’s martingale residuals.

2.4. The proposed GoF test statistics

The GoF test statistics can be defined as follows

W (z) =
1√
n

n
∑

i=1

I(Zi ≤ z)r̂Li ,

where r̂Li = rLi (θ̂), z
⊤ = (z(1), z(2), ..., z(q)) is a p-dimensional vector of covariates, I(·)

represents an indicator function, and I(Zi ≤ z) =
∏q

p=1 I(Z
(p)
i ≤ z(p)). If the fitted

model holds, W (z) converges weakly to the zero-mean Gaussian process. To perform
a formal GoF test, Womn = supz |W (z)| was defined, where the supremum is taken
over Z ∈ Rq. Deriving the null distribution of Womn analytically is difficult, since
the covariance function of W (z) would be complicated. Therefore, we employed a
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simulation-based technique according to the previously proposed concept [21]

Ŵ (z) =
1√
n

n
∑

i=1

I(Zi ≤ z)r̂Li Gi

+
1√
n

n
∑

j=1

I(Zj ≤ z)
∂r̂Lj
∂θ

∣

∣

∣

θ=θ̂
I(θ̂)−1

n
∑

i=1

Ui(θ̂)Gi,

where the definition of U(θ) and I(θ) were (1) and (2) in Section 2.2, respectively,
and Gi represents a random variable that follows the standard normal distribution,
independent of data used. Conditional on data, Ŵ (z) converges weakly to a zero-
mean Gaussian process with the same covariance function as the limiting zero-mean
Gaussian process of W (z) when the fitted model holds (Appendix). Therefore, the
unconditional distribution of Womn = supz |W (z)| is asymptotically equivalent to the

conditional distribution of Ŵomn = supz |Ŵ (z)| of the given data. {Gi} represent

the only random quantities in Ŵ (z), and any number of realizations of Ŵ (z) can be
generated by using computer generation of {Gi}. The p-value for Womn can be defined

as M−1♯{Ŵomn > Womn}, where ♯{·} represents the number for realizations satisfying
the condition in the bracket and M is a sufficient large number for the realization of
Ŵomn. The test with Womn is based on W (z), which accumulates residuals along the
direction of all covariates in Zi. Therefore, the test with Womn was named the omnibus
test.

In the model-identification processes, any improvements of the current model are
important, especially when a misspecification of the current model is suggested. Let

Z
(p)
i be the kth element of Zi and z(p) be a scalar. Then, a special case of W (z) is

defined as

W (p)(z(p)) =
1√
n

n
∑

i=1

I(Z
(p)
i ≤ z(p))r̂Li .

Afterward, it can be demonstrated that, if the fitted model holds, W (p)(z(p)) converges
weakly to a zero-mean Gaussian process.

Ŵ (p)(z(p)) =
1√
n

n
∑

i=1

I(Z
(p)
i ≤ z(p))r̂Li Gi

+
1√
n

n
∑

j=1

I(Z
(p)
j ≤ z(p))

∂r̂Lj
∂θ

∣

∣

∣

θ=θ̂
I(θ̂)−1

n
∑

i=1

Ui(θ̂)Gi

Depending on data, Ŵ (p)(z(p)) converges weakly to a zero-mean Gaussian process
with the same covariance function as the limiting zero-mean Gaussian process of
W (p)(z(p)) when the fitted model holds, and a supremum type GoF test based on
Wk = supz(p) |W (p)(z(p))| can be performed, where the supremum is taken over
z(p) ∈ (−∞,∞). This test is expected to be a powerful tool for the detection of
the misspecification of the Z(p) functional form in the fitted model, and therefore,
we named it the functional-form test. In addition to the formal evaluation using the
p-value, the plotting of some realizations of the null process W̃ (p)(z(p)) with the re-
alization of W (p)(z(p)) is very useful, together with the graphical examination of the
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differences between the realization of W (p)(z(p)) and the null processes.

3. Simulation study

We evaluated the size and power of the proposed method for the regression diagnostics.
We considered two observation processes of time-to-events: fixed and regular interval,
that is t = 1, 2, ..., 10 for every subject (OP1) and a random interval with the fixed time
points, t = 1, 2, ..., 10, perturbed by the addition of a random number following the
uniform distribution at [−0.25, 0.25] (OP2). For each of these observation processes,
we considered three datasets.

In the Dataset 1, the failure time was generated by using the Weibull AFT model,

Dataset 1 : log T = Z1 + Z2
1 + Z2 + Z2

2 + ǫ,

where Z1 ∼ U [−1, 1], Z2 ∼ N(0, 1) and ǫ follows the standard extreme value distribu-
tion. We fitted the following Weibull AFT models to this dataset:

Model 1 : log T = β0 + β1Z1 + β2Z
2
1 + β3Z2 + β4Z

2
2 + σǫ,

Model 2 : log T = β0 + β1Z1 + β2Z2 + β3Z
2
2 + σǫ,

and

Model 3 : log T = β0 + β1Z1 + β2Z
2
1 + β3Z2 + σǫ.

In Dataset 2, the failure time was generated from the PE model,

Dataset 2 : log λ(t|Z) = log λj + Z1 + Z2
1 + Z2 + Z2

2

for t ∈ Ij , with τ = {1, 4, 9, 16} and λ = {0.05, 0.1, 3, 2}, where Z1 ∼ U [−1, 1] and
Z2 ∼ N(0, 1). We fitted the following PE models:

Model 1 : log λ(t|Z) = log λj + β1Z1 + β2Z
2
1 + β3Z2 + β4Z

2
2 ,

Model 2 : log λ(t|Z) = log λj + β1Z1 + β2Z2 + β3Z
2
2 ,

and

Model 3 : log λ(t|Z) = log λj + β1Z1 + β2Z
2
1 + β3Z2.

In Dataset 3, the failure time was generated from the Weibull AFT model, where
ǫ follows the normal distribution. The Weibull AFT model was applied to Dataset 3,
where ǫ was assumed to follow the standard extreme value distribution, and therefore,
the error distribution in the Dataset 3 was misspecified, while Dataset 1 and 2 were
correctly specified in terms of the error distribution. Considering the regression model,
for each dataset, Model 1 was correctly specified, and Models 2 and 3 were misspecified
in terms of Z1 and Z2, respectively. Using each model, we evaluated the size or power
of the omnibus test and performed the functional form tests for Z1 and Z2 based on
1,000 simulated null processes. The number of subjects was set to 100, 200, or 500.
The parameters were estimated by using the SAS procedure, PROC LIFEREG, while
the proposed GoF test statistics was implemented with R.
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Table 1. Summary of empirical sizes and powers for the omnibus and functional
form tests with the nominal level of 0.05; OP denotes the observation process.

Functional-form test

OP Dataset N Model Omnibus test Z1 Z2

OP1 Dataset 1 100 Model 1 0.079 0.062 0.073
Model 2 0.306 0.576 0.075
Model 3 0.975 0.077 1

200 Model 1 0.058 0.052 0.058
Model 2 0.493 0.870 0.064
Model 3 1 0.068 1

500 Model 1 0.054 0.057 0.051
Model 2 0.880 0.998 0.053
Model 3 1 0.050 1

Dataset 2 100 Model 1 0.096 0.073 0.083
Model 2 0.212 0.495 0.071
Model 3 0.761 0.075 0.985

200 Model 1 0.070 0.070 0.060
Model 2 0.388 0.776 0.065
Model 3 0.990 0.050 1

500 Model 1 0.067 0.069 0.058
Model 2 0.810 1 0.060
Model 3 1 0.060 1

Dataset 3 100 Model 1 0.136 0.060 0.110
Model 2 0.273 0.504 0.062
Model 3 0.962 0.066 1

200 Model 1 0.060 0.046 0.059
Model 2 0.426 0.793 0.059
Model 3 1 0.067 1

500 Model 1 0.053 0.044 0.062
Model 2 0.771 0.989 0.068
Model 3 1 0.064 1

OP2 Dataset 1 100 Model 1 0.082 0.052 0.076
Model 2 0.304 0.567 0.073
Model 3 0.967 1 0.092

200 Model 1 0.071 0.052 0.071
Model 2 0.492 0.864 0.068
Model 3 0.999 0.068 1

500 Model 1 0.066 0.048 0.056
Model 2 0.886 0.999 0.054
Model 3 1 0.050 1

Dataset 2 100 Model 1 0.102 0.075 0.088
Model 2 0.229 0.557 0.082
Model 3 0.792 0.063 0.99

200 Model 1 0.063 0.062 0.071
Model 2 0.389 0.793 0.060
Model 3 0.983 0.047 1

500 Model 1 0.058 0.054 0.065
Model 2 0.811 0.997 0.057
Model 3 1 0.054 1

Dataset 3 100 Model 1 0.080 0.072 0.080
Model 2 0.730 0.885 0.838
Model 3 0.743 0.839 0.894

200 Model 1 0.060 0.053 0.061
Model 2 0.772 0.956 0.875
Model 3 0.963 0.923 0.999

500 Model 1 0.065 0.049 0.074
Model 2 0.846 0.993 0.872
Model 3 0.999 0.918 1
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3.1. Results

In Table 1, empirical sizes and powers obtained for the nominal 5% level tests are
presented. When using Model 1, which correctly specified the data-generating models,
all omnibus and functional form tests were shown to have the empirical sizes close to
the nominal level of 5%, regardless of the sample size. As Model 2 had a misspecified
functional form for Z1, using this model, the empirical powers of the functional form
tests for Z1 were shown to be larger than those obtained in the other tests. Similarly,
with Model 3, which had a misspecified functional form for Z2, the functional form
tests for Z2 had larger empirical powers than those in the other tests. These results
indicate that the functional form tests are sensitive to the misspecification of the
functional forms of covariates, and that they are useful for determining the nature of
a misspecification. This observation can be used to improve the current model. Using
Dataset 3, where both the error distribution and functional form were misspecified,
the performance of functional form tests was shown to depend on the observed time
point. For the regular time points, the functional form tests work well. However, when
the observed time points are perturbed, the functional form tests cannot distinguish
the misspecified covariate functions.

4. Application example

We illustrated our proposed method using the medical examination data collected
at the Kouseiren Health Care Center in Kagoshima, Japan. This dataset included
data obtained from 2,656 subjects enrolled in 2001, who received the annual medical
checkups, and were followed until 2011. The objective of this analysis was to predict
the time-to-initiation of the hypertension therapy. Each subject was asked whether
he/she had received hypertension therapy at each annual medical checkup: the exact
date of the initiation of hypertension therapy was not recorded, showing that the time-
to-initiation of a hypertension therapy was interval-censored. Assuming that we were
interested in estimating the survival function of a subject with a given covariate in
2001 accurately, we applied the Weibull AFT model with age, BMI (body mass index),
DBP (diastolic blood pressure), and SBP (systolic blood pressure). DBP and SBP were
shown to be highly correlated, and therefore, we transformed these parameters into a
single parameter, the mean arterial pressure (MAP), defined as MAP:= 2

3DBP+1
3SBP.

No hypertension therapies have been initiated for 75 % of the analyzed subjects, and
they were right-censored in 2011, while the remainder of the patients was interval-
censored.

We began by applying the model:

Model 1 : log T = β0 + β1AGE + β2BMI + β3MAP + σǫ,

where ǫ followed the standard extreme value distribution. All regression coefficients
significantly differed from 0 (p<0.0001). When applying the proposed method, p-values
were evaluated with 1,000 simulated realizations of the null processes. The p-value of
the omnibus test was 0.032, indicating that the Model 1 was misspecified. In Figure 1
(a), graphical plots of 50 randomly selected realizations of the null process Ŵ (p)(z(p))
are shown with the realization of W (p)(z(p)) for AGE, BMI, and MAP, respectively.
The realization of W (p)(z(p)) for MAP appears very different from the realizations of
the simulated null process. Correspondingly, the p-values of the functional form tests
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Figure 1. Plots of the cumulative martingale residuals for the functional form tests with 50 randomly selected
simulated null processes for the Model 1 applied to the health checkup data.

were p=0.259 for age, p=0.650 for BMI, and p=0.001 for MAP. Therefore, the linearity
assumption of MAP in Model 1 was considered suspicious. We attempted to improve
the GoF by modifying the functional form of MAP, and applied the model with the
quadratic term of MAP, as follows:

Model 2 : log T = β0 + β1AGE + β2BMI + β3MAP + β4MAP 2 + σǫ.

Once again, all regression coefficients, including the quadratic term for MAP, signifi-
cantly differed from 0 (p<0.0001). The p-value of the omnibus test was 0.430. In Figure
1 (b), graphical plots for the assessment of Model 2 are presented. The corresponding
p-values of the functional form tests were p=0.747 for AGE, p=0.963 for BMI, and
p=0.276 for MAP. GoF for the functional form of MAP was shown to be improved
and substantial misspecification of Model 2 was not suggested.

5. Discussion

Although fully parametric survival regression models are very important for the anal-
yses of the interval-censored observations, regression diagnostic techniques are less
developed. Therefore, we developed a GoF test and graphical diagnostic method, and
the results of our simulation study and the application of our method for the analysis
of medical examination data showed that it can efficiently detect the misspecification
of the functional forms of covariates. In addition, we confirmed theoretically that the
proposed method operate normally for the interval censored data under the suitable
conditions (see Appendix).
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Figure 2. Plots of the adjusted Cox-Snell residual log with a smoothing curve (dotdash curve) for Model 1
applied to the medical checkup dataset. Smoothing curves were included using the function smooth.spline in
R, according to a previous report by Hastie and Tibshirani [26].

Additionally, we attempted to precisely define further steps necessary for the im-
provement of the current model. As demonstrated in the example presented in this
study, the proposed method can indicate possible areas of improvement and it is useful
for the efficient model-building. In our analysis of the medical examination data, the
graphical plots obtained for the cumulative residuals suggested the non-linearity of
MAP. Sets of graphical plots for the functional form tests, such as those presented in
Figure 1 are very informative for the determination of the covariates for which the
functional form should be modified. However, since the residuals were aggregated, it is
difficult to estimate the type of the non-linear function that should be further applied
based on the plots of cumulative residuals. We added a quadratic term for MAP to
capture the non-linearity in an ad hoc manner. For the right-censored Weibull AFT
model, Lindqvist et al. [24] proposed a method for the determination of the functional
form of a covariate by smoothing the log of the adjusted Cox-Snell residuals over the
covariate values. A similar approach can be employed for the interval-censored obser-

vations. In Figure 2, we present the plots of (Z
(p)
i , log (1− r̂Ci )) for Model 1 with a

smoothing curve for AGE, BMI, and MAP. The results presented in Figure 2 suggest
that a quadratic pattern remains for the MAP residuals. However, the possible in-
sights obtained by using the results presented in Figure 2 may be highly subjective,
but coupled with the formal evaluation by using our proposed method, these plots may
be useful for the evaluation of model improvements. As another candidate approach,
Hashimoto et al. [25] proposed the modified deviance residuals for the normal linear
regression model.

The proposed method is limited such that the deviation from the true model in
terms of parameters, except for the covariate effects, must be negligible, and covariates
need to be bounded, which is assumed for the theoretical consideration. However,
the condition of the boundedness of covariates may be relaxed, and the influence
for real data analysis is relatively small since we deal with finite samples. Actually,
the proposed method operate normally in the simulation using covariates sampled
from the normal distribution. We will deepen more considerations in next research.
Taken together, further research is required for the development and integration of the
methods to obtain the clue of model improvements (e.g., [25]), which can then allow
a more efficient construction of models.
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Appendix

We consider the parametric PH model such as S(t, Z) = {S0(t)}exp(β
⋆⊤Z) where β⋆

is a vector of regression coefficients and S0(t) is the baseline survival function. The
Weibull AFT and the PE model are included in the parametric PH model. For this
model, we confirm that the proposed GoF test statistics operate normally under the
suitable conditions. First, we organize the sufficient conditions of observed data L, R
and Z for the boundedness of the martingale residuals rL(θ0) and its derivative for

β⋆. By using these boundedness, secondly, we show that W (z) and Ŵ (z) convergent
weakly to the same zero-mean Gaussian distribution.

Conditions for boundedness of r
L(θ0) and ∂

∂β⋆
r
L(θ0)

Conditions are the followings:

(1) A positive number, η, exists, which satisfies with P (L−R ≥ η) = 1.
(2) The union of the support of L and R is contained in an interval [τ0, τ1], where

0 < τ0 < τ1 < ∞.
(3) (a) The distribution of Z is not concentrated on any proper affine subspace of Rq

(i.e. of dimension q− 1 or smaller). (b) Z is bounded; there exists some positive
constant K such as |Z| ≤ K.

Theorem 5.1. Suppose that S0(t) is a monotone decreasing function such as S0(t) =
exp(−a(t)) where a(t) is a monotone increasing function such as a(0) = 0 and a(∞) =

∞. Then, under the conditions (3), S(t|Z; θ0) = {S0(t)}exp(β
⋆⊤Z) is strictly positive

and bounded continuous function on t ∈ [τ0, τ1] such as 0 < τ0 < τ1 < ∞.

Proof. For fixed Z, the following inequality,

0 = S0(∞) < S0(τ1) < S0(τ0) < S0(0) = 1

holds. While, by the condition (3)

|β⋆⊤Z| ≤ |β⋆||Z| < ∞
∴ 0 < exp(β⋆⊤Z) < ∞.

Thus, for all t,

S(t|Z; θ0) → 0 as exp(β⋆⊤Z) → ∞

and

S(t|Z; θ0) → 1 as exp(β⋆⊤Z) → 0.

Therefore, S(t|Z, θ0) ∈ (0, 1) holds, and then, | logS(t|Z, θ0)| < ∞ holds.

Corollary 5.2. Suppose S0(t) and Z are same as that of Theorem 5.1. Then, for any
two time points t1 and t2 such as t1 < t2 ∈ [τ0, τ1], which implies the condition (1)
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and (2), and 0 < ǫ < ∞,

Pt,Z{(S(t1|Z; θ0)− S(t2|Z; θ0)) > ǫ} = 1,

Pt,Z{|S(t1|Z; θ0) logS(t1|Z; θ0)− S(t2|Z; θ0) logS(t2|Z; θ0)| < ∞} = 1

and

Pt,Z{|S(t1|Z; θ0) logS(t1|Z; θ0)
2 − S(t2|Z; θ0) logS(t2|Z; θ0)

2| < ∞} = 1

hold.

Proof. The following inequality holds for t1 < t2 and fixed Z:

S0(t1) > S0(t2)

⇒ {S0(t1)}exp(β
⋆⊤Z) > {S0(t2)}exp(β

⋆⊤Z)

⇒ S(t1|Z; θ0) > S(t2|Z; θ0).

Thus, S(t1|Z; θ0)−S(t2|Z; θ0) > 0 holds, and S(t1|Z; θ0)−S(t2|Z; θ0) < ∞ holds since
we obtain the result of boundedness of S(t1|Z; θ0) and logS(t1|Z; θ0) by Theorem 5.1.
Moreover, the following inequality holds:

|S(t1|Z; θ0) logS(t1|Z; θ0)− S(t2|Z; θ0) logS(t2|Z; θ0)|
< |S(t1|Z; θ0) logS(t1|Z; θ0)|+ |S(t2|Z; θ0) logS(t2|Z; θ0)|
≤ |S(t1|Z; θ0)|| logS(t1|Z; θ0)|+ |S(t2|Z; θ0)|| logS(t2|Z; θ0)|
< ∞.

Similarly, the following inequalities holds:

|S(t1|Z; θ0) logS(t1|Z; θ0)
2 − S(t2|Z; θ0) logS(t2|Z; θ0)

2|
< |S(t1|Z; θ0) logS(t1|Z; θ0)

2|+ |S(t2|Z; θ0) logS(t2|Z; θ0)
2|

≤ |S(t1|Z; θ0)| logS(t1|Z; θ0)
2 + |S(t2|Z; θ0)| logS(t2|Z; θ0)

2

< ∞

by Theorem 5.1.

Now, we can prove the boundedness of the martingale residuals rL(θ0) and its

derivative for β⋆, ∂rL(θ0)
∂β⋆ . rL(θ0) and

∂rL(θ0)
∂β⋆ are provided as

rL(θ0) =
S(L|Z; θ0) logS(L|Z; θ0)− S(R|Z; θ0) logS(R|Z; θ0)

S(L|Z; θ0)− S(R|Z; θ0)
,

∂

∂β⋆
rL(θ0) =− Z

[ logS(L|Z; θ0)S(L|Z; θ0)(1 + logS(L|Z; θ0))

S(L|Z; θ0)− S(R|Z; θ0)

− logS(R|Z; θ0)S(R|Z; θ0)(1 + logS(R|Z; θ0))

S(L|Z; θ0)− S(R|Z; θ0)
− rL(θ0)

2
]

.

The S0(t) of the Weibull AFT and PE model satisfy with the conditions for that of
Theorem 5.1. Therefore, under the conditions (1)–(3), the boundedness of martingale
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residuals rL(θ0) and its derivative ∂
∂β⋆ rL(θ0) are hold by Theorem 5.1 and Corollary

5.2.

Weak convergence of W (z) and Ŵ (z)

We shall demonstrate that W (z) and Ŵ (z) have the same zero-mean Gaussian dis-
tribution in the same line of Lin and Spiekerman [21]. By Taylor series expansion,
W (z) = W̃ (z) + op(1) uniformly, where

W̃ (z) =
1√
n

[

n
∑

i=1

I(Zi ≤ z)rLi (θ0) +
1√
n

n
∑

j=1

I(Zj ≤ z)
∂rLj (θ)

∂θ

∣

∣

∣

θ=θ0

√
n(θ̂ − θ0)

]

=
1√
n

n
∑

i=1

I(Zi ≤ z)rLi (θ0)

+
1

n

n
∑

j=1

I(Zj ≤ z)
∂rLj (θ)

∂θ

∣

∣

∣

θ=θ0

( 1

n
I(θ0)

)−1 1√
n

n
∑

l=1

Ul(θ0)

=
1√
n

n
∑

i=1

I(Zi ≤ z)rLi (θ0) +
1√
n

n
∑

j=1

I(Zj ≤ z)
∂rLj (θ)

∂θ

∣

∣

∣

θ=θ0
I(θ0)

−1
n
∑

l=1

Ul(θ0),

where we use the standard maximum likelihood theory, i.e.,

√
n(θ̂ − θ0) =

( 1

n
I(θ0)

)−1 1√
n

n
∑

i=1

Ui(θ0) + op(1).

Ŵ (z) is obtained from W̃ (z) by multiplying Gi (i = 1, ..., n) and replacing θ0 with θ̂.
Let

Hi(z; θ) = I(Zi ≤ z)rLi (θ) + J(θ)J (θ)−1Ui(θ),

where J(θ) = n−1
∑n

i=1 I(Zi ≤ z)∂r
L
i (θ)
∂θ and J (θ) = n−1I(θ). Then, the covariance

function for Ŵ (·) between z1 and z2 is

C[Ŵ (z1), Ŵ (z2)] = EG

[ 1√
n

n
∑

i=1

Hi(z1; θ̂)Gi
1√
n

n
∑

i=1

H⊤
i (z2; θ̂)Gi

]

=
1

n

n
∑

i=1

Hi(z1; θ̂)H
⊤
i (z2; θ̂)EG[G

2
i ]

=
1

n

n
∑

i=1

Hi(z1; θ̂)H
⊤
i (z2; θ̂).

This equation converges almost surely to E
[

H1(z1; θ0)H
⊤
1 (z2; θ0)

]

, which is the asymp-

totic covariance function for W̃ (z), due to the strong consistency of θ̂ and the strong

law of large numbers. Following this, the finite-dimensional distributions of Ŵ (z) and
W̃ (z) are both asymptotically normal, according to the Lindeberg-Feller theorem and
the Cramér–Wold device.
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To show the tightness of W̃ (z), we utilized the application of Bickel and Wichura [27]
who developed the convergence criteria of stochastic processes for the function in Dq,
which is the uniform closure in the space of all bounded functions of the q-dimensional
vector subspace of functions. Define

W̃ (z) = W̃1(z) + W̃2(z),

where

W̃1(z) =
1√
n

n
∑

i=1

I(Zi ≤ z)rLi (θ0)

and

W̃2(z) =
1

n

n
∑

i=1

I(Zi ≤ z)
∂rLi (θ)

∂θ
|θ=θ0J (θ0)

−1S(θ0),

where S(θ0) = 1√
n

∑n
i=1 Ui(θ0). We apply Theorem 1 and 3 of [27] to show the tightness

of W̃1(z) and W̃2(z), respectively.

For q-dimensional vector zi = {z(p)i }p=1,...,q (i = 1, 2, 3) with the order such as

z
(p)
1 < z

(p)
2 < z

(p)
3 for each p, the following inequality holds:

Ez[|W̃1(z2)− W̃1(z1)|2|W̃1(z3)− W̃1(z2)|2]

=Ez[|n−1/2
n
∑

i=1

q
∏

p=1

I(z
(p)
1 < Z

(p)
i < z

(p)
2 )rLi (θ0)|2

|n−1/2
n
∑

i=1

q
∏

p=1

I(z
(p)
2 < Z

(p)
i < z

(p)
3 )rLi (θ0)|2]

≤Ez(

n
∑

i=1

rLi (θ0)
2)2

q
∏

p=1

P(z
(p)
1 < Z(p) < z

(p)
3 )2. (3)

The boundedness of rLi (θ0) holds under the conditions (1)–(3) (See previous section),
and ErLi (θ0) = 0 when the model is specified correctly. Therefore, the left side of (3)
is bounded, and its mean is zero. According to Bickel and Wichura [27], define,

M ′′
p = sup{|W̃1(z

(p)
2 )− W̃1(z

(p)
1 )| ∧ |W̃1(z

(p)
3 )− W̃1(z

(p)
2 )| : z(p)1 < z

(p)
2 < z

(p)
3 ∈ Z(p)}

and M ′′ = maxpM
′′
p . By Chebyshev’s inequality, (3) implies that

P(M ′′ ≥ λ) ≤ Lλ−4µ(Z)2

where µ(Z) is a finite nonnegative measure on Z which corresponds to
∏q

p=1 P(z
(p)
1 <

Z(p) < z
(p)
3 ) in (3), and L is the bound of (

∑n
i=1 r

L
i (θ0)

2)2 in (3). Therefore, Theorem

1 of [27] holds for (γ, β) = (4, 2). Moreover, suppose that each W̃
(p)
1 (z) vanishes along
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the lower boundary of Z(p). Consequently, the tightness of W̃1(z) holds from Theorem
3 of [27].

Similarly, for the tightness of W̃2(z), the following equation holds:

Ez[|W̃2(z2)− W̃2(z1)|2|W̃2(z3)− W̃2(z2)|2]

= Ez[|n−1
n
∑

i=1

I(z
(p)
1 < Z

(p)
i < z

(p)
2 )

∂rLi (θ)

∂θ

∣

∣

∣

θ=θ0
J (θ0)

−1S(θ0)|2

|n−1
n
∑

i=1

I(z
(p)
2 < Z

(p)
i < z

(p)
3 )

∂rLi (θ)

∂θ

∣

∣

∣

θ=θ0
J (θ0)

−1S(θ0)|2]

≤ Ez

(

n−1
n
∑

i=1

∂rLi (θ)

∂θ

∣

∣

∣

2

θ=θ0

)2(J (θ0)
−1S(θ0)

)4
q
∏

p=1

P(z
(p)
1 < Z(p) < z

(p)
3 )2. (4)

With maximum likelihood theory, E[J (θ0)
−1S(θ0)] → 0 as θ̂ → θ0, and the bound-

edness of J (θ0)
−1S(θ0) holds. The boundedness of ∂rLi (θ)

∂θ holds under the conditions
(1)–(3) (See previous section). Therefore, the left side of (4) is bounded, and its mean
is zero. Then, the tightness of W̃2(z) holds in the same line for W̃1.

The tightness of Ŵ (z) has the same argument as that of W̃ (z), since the mean

and covariance of Ŵ (z) is invariant against the operator Gi. For Ŵ (z) = Ŵ1(z) +

Ŵ2(z), the tightness holds for Ŵ1(z) and Ŵ2(z), respectively, the same as for W̃1(z)

and W̃2(z). Since the boundedness of rLi (θ),
∂rLi (θ)
∂θ and J (θ̂)−1S(θ̂) hold in the same

line for W̃ (z), and ErLi (θ̂) → 0 as θ̂ → θ0 and E[J (θ̂)−1S(θ̂)] = 0 for Ŵ1(z) and

Ŵ2(z), respectively. Therefore, the conditionals on data, Ŵ (z) have the same zero-
mean Gaussian distribution as W̃ (z) asymptotically.
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