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Ischemia/reperfusion injury is the leading cause of acute

tubular necrosis. Nitric oxide has a protective role against

ischemia/reperfusion injury; however, the role of asymmetric

dimethylarginine (ADMA), an endogenous inhibitor of

nitric oxide synthase, in ischemia/reperfusion injury

remains unclear. ADMA is produced by protein arginine

methyltransferase (PRMT) and is mainly degraded by

dimethylarginine dimethylaminohydrolase (DDAH). Here we

examined the kinetics of ADMA and PRMT and DDAH

expression in the kidneys of ischemia/reperfusion-injured

mice. After the injury, DDAH-1 levels were decreased and

renal and plasma ADMA values were increased in association

with renal dysfunction. Renal ADMA was correlated with 8-

hydroxy-20-deoxyguanosine, a marker of oxidative stress. An

antioxidant, N-acetylcysteine, or a proteasomal inhibitor, MG-

132, restored these alterations. Infusion of subpressor dose of

ADMA exacerbated renal dysfunction, capillary loss, and

tubular necrosis in the kidneys of ischemia/reperfusion-

injured wild mice, while damage was attenuated in DDAH

transgenic mice. Thus, ischemia/reperfusion injury–induced

oxidative stress may reduce DDAH expression and cause

ADMA accumulation, which may contribute to capillary loss

and tubular necrosis in the kidney.
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Acute kidney injury (AKI) occurs in 5% of all hospitalized
patients, and it is associated with 25 to over 90% of mortality
in these subjects.1 A large cohort analysis has shown that AKI
is associated with an odds ratio of death of 5.5.2 Ischemia/
reperfusion (IR) injury is the leading cause of AKI/acute
tubular necrosis (ATN), for which no specific therapy is
currently available.3 Therefore, a further understanding of the
pathophysiological mechanism of AKI will enable the design
and development of therapeutic approaches for this
devastating disorder.

Although various vasoactive factors and cytokines have
been shown to have a role in AKI,4,5 endothelial dysfunction
and capillary loss due to reduced production and/or
impaired function of nitric oxide (NO) are considered to
be the key components that could elicit ATN and the
progression of renal IR injury.6 Indeed, increased reactivity to
vasoconstrictive agents and decreased vasodilatory responses
were observed in the arterioles of the postischemic kidney.7

Peritubular capillary (PTC) loss was positively associated
with tubular damage in the kidney of ischemic AKI, both of
which were ameliorated by transplanted endothelial cell.8

NO precursor L-arginine has been shown to improve the
postischemic AKI in rats,9 whereas inhibition of NO synthase
(NOS) exacerbates the renal I/R injury.10 Treatment with
NO donor has exerted remarkable protective effects against
the postischemic AKI.11,12 Further, Satake et al.13 found that
estrogen not only augmented renal blood flow but also
attenuated renal injury induced by IR in rats via activation of
endothelial NOS (eNOS). These findings suggest the protec-
tive role of endothelium-derived NO against renal IR injury.

Asymmetric dimethylarginine (ADMA) is a degradation
product of methylated protein, which is produced and
metabolized by the enzymes protein arginine methyltrasnfer-
ase (PRMT) and dimethylarginine dimethylaminohydrolase
(DDAH), respectively.14 It is a potent endogenous inhibitor
of NOS, thus being involved in endothelial dysfunction,
arterial stiffness, and renal injury.14–17 Moreover, plasma
ADMA level has been shown to be a predictor for graft
failure, renal and cardiovascular events, and all-cause
mortality in kidney transplant patients.18 As expression
and/or activity of PRMT and DDAH are regulated by reactive
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oxygen species generation19 and oxidative stress has a role in
IR injury,20,21 it is conceivable that ADMA generation in the
kidney is increased under oxidative stress conditions
of IR injury and that beneficial effects of NO on renal
microvasculature are compromised, which could lead to the
development and progression of AKI. To address the issues,
in this study, we first examined the kinetics of ADMA, and
PRMT-1 and DDAH-1 levels in the kidney of IR-injured
mice. Then, we investigated the effects of continuous infusion
of subpressor dose of ADMA on renal IR injury in wild mice
and also studied whether IR injury was attenuated in DDAH-
1-overexpressed transgenic (DDAH-1 Tg) mice.

RESULTS
Renal function, ADMA values, and expression levels of
DDAH-1 and PRMT-1 in IR-injured mice

Compared with the control mice, serum blood urea nitrogen
(BUN) and creatinine (Cr) levels were significantly elevated
after IR injury (Figure 1a and b). As shown in Figure 1c, renal
ADMA levels in IR-injured mice were increased in a bell-
shaped manner; the values reached a maximum at 1 h after
the IR injury and still significantly higher at 24 h compared
with those of controls. Further, plasma levels of ADMA at
24 h after the injury were elevated to about two-fold of those
of control mice (Figure 1d).

Western blot analysis revealed that renal levels of DDAH-1
were suppressed in a time-dependent manner after IR injury.
DDAH-1 expression levels began to decrease at 1 h post
reperfusion and reached a nadir at 6 h after IR injury; the

values were about 1/4 of those of control mice (Figure 2a).
Although PRMT-1 levels had a tendency to increase after IR
injury, it was modest but not significant. In contrast to the
response to IR, although ischemia for 45 min (0 h) and a
further 15 min (1 h) decreased DDAH-1 expression, no
further decrease in DDAH-1 levels was observed as a function
of ischemia time; there was a significant difference of DDAH-
1 levels at 6 h between the ischemia-only group and the IR-
injured group (Figure 2a).

Real-time reverse transcription PCR (RT-PCR) analysis
showed that mRNA levels of DDAH-1 were rapidly decreased
by ischemia itself (0 h), and no further decrease in DDAH-1
mRNA levels was observed. Moreover, pretreatment with
N-acethylcysteine (NAC) did not restore the decrease in
DDAH-1 mRNA levels in the IR-injured kidney (Figure 2b).

Relationship between renal ADMA and
8-hydroxy-20-deoxyguanosine (8-OHdG) levels

As shown in Figure 3a, renal levels of 8-OHdG, a marker of
oxidative stress, were increased after IR injury. Although
plasma ADMA levels were not correlated with renal 8-OHdG,
there was a significant positive association between ADMA and
8-OHdG in the kidney of IR-injured mice (Figure 3b and c).

Effects of NAC infusion on renal IR injury

As the oxidative stress marker significantly correlated with
renal ADMA levels (Figure 3b), we next investigated whether
administration of the antioxidant NAC before the ischemic
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Figure 1 | Renal function and asymmetric dimethylarginine (ADMA) values in ischemia/reperfusion (IR)-injured mice. (a) Plasma blood
urea nitrogen (BUN), (b) creatinine (Cr), (c) renal, and (d) plasma levels of ADMA in control (n¼ 18) or IR-injured wild mice (n¼ 48, including IR
0 h (n¼ 12)). Mice were subjected to 45 min of bilateral renal ischemia. Reperfusion was allowed by means of clips removal for 0 h (n¼ 12), 1 h
(n¼ 6), 6 h (n¼ 8), and 24 h (n¼ 22). Control mice were sham-operated (n¼ 18). ADMA levels were measured by high-performance liquid
chromatography.
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insult could block the IR injury. As shown in Figures 2a and
4, pretreatment of NAC significantly restored the decreased
DDAH-1 levels and activity in the IR-injured kidney, which
was associated with reduction of renal and plasma ADMA
values and improvement of renal dysfunction.

Mechanisms of renal DDAH-1 alteration in IR injury

As shown in Figure 5, a proteasomal inhibitor, MG-132,
treatment significantly restored the decreased DDAH-1

levels, which was associated with reduction of plasma ADMA
levels and improvement of renal dysfunction.

Effect of ADMA infusion and DDAH-1 overexpression on renal
IR injury

To further elucidate the pathophysiological role of
ADMA in renal IR injury, we first examined the effects
of continuous infusion of subpressor dose of ADMA on
IR-induced renal damage. As shown in Table 1, infusion of
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Figure 2 | Renal dimethylarginine dimethylaminohydrolase (DDAH)-1 and protein arginine methyltransferase (PRMT)-1 levels after
ischemia with (n¼ 36) or without reperfusion injury (n¼ 24, including ischemia/reperfusion (IR) 0 h (n¼ 12)). Wild mice (n¼ 36) were
subjected to 45 min of bilateral renal ischemia with reperfusion. Then, reperfusion was allowed by means of clips removal for 1 h (n¼ 6), 6 h (n¼ 8),
and 24 h (n¼ 22). Control mice were sham-operated (n¼ 18). To examine the effects of ischemia only, wild mice (n¼ 24) were subjected to 45 min
(0 h, n¼ 12), 1 h (n¼ 6), and 6 h (n¼ 6) of bilateral renal ischemia. N-acethylcysteine (NAC; 300 mg/kg of body weight) was administered
intraperioneally at 1 day and 15 min before IR injury (n¼ 6). The results of densitometric analysis are presented as a fold change compared with
control mice. (a) Upper panel shows the representative bands of western blots. Lower panel shows the quantitative data. Data were normalized by
the intensity of b-actin and related to the value of the control. (b) DDAH-1 mRNA levels after ischemia with or without reperfusion injury. *Po0.05
and **Po0.01 compared with control, respectively. a.u., arbitrary units; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; NS, not significant.
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Figure 3 | Relationship between asymmetric dimethylarginine (ADMA) and 8-hydroxy-20-deoxyguanosine (8-OHdG). Western blot
analyses for 8-OHdG in the kidney of (a) ischemia/reperfusion (IR)-injured wild mice and its correlations with (b) renal (n¼ 20) or (c) plasma
levels of ADMA (n¼ 20). ADMA levels were measured by high-performance liquid chromatography. Linear regression analysis was performed
between renal or plasma levels of ADMA and renal levels of 8-OHdG.
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ADMA actually increased plasma ADMA levels and
resultantly exacerbated renal dysfunction in IR-injured wild
mice. Therefore, we next investigated whether IR injury was
attenuated in DDAH-1 Tg mice. Although baseline levels of
BUN and Cr were similar between control and DDAH-1
Tg mice, plasma ADMA levels and systolic blood pressure
were siginificantly lower in DDAH-1 Tg mice compared
with control mice (Table 1). Both elevation of plasma
ADMA levels and renal dysfunction induced by IR injury
were significantly prevented in DDAH-1 Tg mice. We
confirmed that the expression levels of DDAH-1 in the
kidney of DDAH-1 Tg mice was 1.5-fold higher than those of
wild mice, which were unaffected by IR injury.

Effects of IR-mediated DDAH–ADMA alteration on eNOS
activity

To confirm that increased ADMA could actually inhibit
eNOS activity, we examined total and phosphorylated
eNOS levels in the IR-injured kidney. Although IR did not
affect total eNOS levels, the ratio of phosphorylated to total

eNOS, a marker of eNOS activity,22 was significantly
decreased by IR (Figure 6a). Infusion of ADMA to IR-
injured mice further reduced the ratio, which was completely
restored in DDAH-1 Tg mice (Figure 6a).

Effects of ADMA infusion and DDAH-1 overexpression on
oxidative stress and IR-induced PTC and tubular damages

We next examined the role of ADMA in IR-induced oxidative
stress generation and renal capillary and tubular damages.
ADMA infusion tended to increase 8-OHdG accumulation in
the IR-injured kidney, which was completely suppressed
in DDAH-1 Tg mice (Figure 6b). As shown in Figure 7,
consistent with previously reports,8,23 capillary density
assessed by CD31 staining was markedly reduced in IR-
induced renal injury. Further, infusion of ADMA augmented
the IR-induced PTC loss, whereas these IR-induced damages
were significantly attenuated in DDAH-1 Tg mice. In
addition, as shown in Figure 8, cellular necrosis, loss of
brush border, cast formation, vacuolization, and tubule
dilation were observed in IR-induced renal injury. These
changes were significantly enhanced by ADMA infusion,
whereas they were attenuated in DDAH-1 Tg mice.
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before IR injury (n¼ 6). Sham-operated mice (n¼ 18) were used as a
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Figure 5 | Mechanism of renal dimethylarginine
dimethylaminohydrolase (DDAH)-1 alteration in ischemia/
reperfusion (IR) injury. Effects of a proteasomal inhibitor MG-132 on
(a) dimethylarginine dimethylaminohydrolase (DDAH)-1 levels,
(b) plasma asymmetric dimethylarginine (ADMA) levels, and (c, d)
renal function. Wild mice (n¼ 11) were subjected to 45 min of
bilateral renal ischemia. Then, reperfusion was allowed by means of
clips removal for 24 h. Mice were treated with MG-132 (n¼ 5) or
dimethyl sulfoxide (n¼ 6) before IR. Sham-operated mice were used
as a control (n¼ 18). (a) Upper panel shows the representative bands
of western blots. Lower panel shows the quantitative data. Data were
normalized by the intensity of b-actin and related to the value of the
control. The results of densitometric analysis are presented as a fold
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DISCUSSION

The salient findings of this study are as follows: (1) decreased
renal levels of DDAH-1 associated with increased levels of

plasma and renal ADMA were observed in IR-injured mice;
(2) renal levels of 8-OHdG, a marker of oxidative stress, were
positively correlated to those of ADMA; (3) treatment with

Table 1 | Effect of ADMA infusion and DDAH-1 overexpression on renal IR injury

Characteristics of animals
Control mice

(n¼ 18)
DDAH-1Tg

control mice (n¼ 6)
IR-injured

wild mice (n¼ 22)
IR-injured ADMA-infused

mice (n¼ 10)
IR-injured DDAH-1 Tg

mice (n¼ 6)

Plasma ADMA (mmol/l) 0.57±0.06 0.46±0.05* 0.82±0.2** 1.70±0.48**,# 0.50±0.06#
Systolic blood pressure (mm Hg) 112±5.5 103±8.1* 111±7.3 110±7.4 101±8.2**,#

Mean blood pressure (mm Hg) 74±7.4 75±7.4 77.6±7.1 72.3±11.0 70.0±3.4#

BUN (mg/dl) 21.9±2.7 23.2±6.3 59.7±22.2** 96.0±31.8**,# 31.2±11.6#

Cr (mg/dl) 0.10±0.03 0.10±0.02 0.26±0.13** 0.37±0.1**,# 0.15±0.74#

Abbreviations: ADMA, asymmetric dimethylarginine; BUN, blood urea nitrogen; Cr, creatinine; DDAH, dimethylarginine dimethylaminohydrolase; DDAH-1Tg, DDAH-1
transgenic; IR, ischemia/reperfusion.
*Po0.05 and **Po0.01 compared with control mice, respectively; #Po0.05 compared with IR-injured wild mice.
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an antioxidant, NAC, or an inhibitor of proteosomal
degradation, MG-132, restored the IR-induced decrease in
DDAH-1 levels and increase in renal and plasma ADMA
values; (4) continuous infusion of subpressor dose of ADMA
actually increased plasma ADMA levels, decreased the ratio of
phosphorylated eNOS to total eNOS levels, and further
exacerbated renal dysfunction, PTC loss, and ATN in
IR-injured mice; and (5) these IR-induced renal damages
were significantly blocked in DDAH-1 Tg mice. Therefore,
our present findings suggest that IR could elicit tubular
damage and thereby contribute to the development of AKI by
elevating ADMA levels in the kidney.

ADMA is generated by PRMT, whereas it is mainly
degraded by DDAH.14 In this study, DDAH-1 expression was
markedly suppressed in IR-injured kidneys, whereas the
effects of IR on renal PRMT-1 expression were modest.

Therefore, suppression of DDAH-1 rather than upregulation
of PRMT-1 may be mainly involved in the elevation of renal
and subsequent plasma levels of ADMA in IR-injured mice.
There is accumulating evidence that DDAH expression
is suppressed under oxidative stress conditions.21,24 Indeed,
we have recently found that advanced glycation end products,
senescent macroprotein derivatives formed accelerate-
dly under diabetes, decrease DDAH-1 expression and
subsequently increase ADMA generation in renal proximal
tubular cells via oxidative stress generation.21 Homocysteine-
induced oxidative stress increases ADMA generation in
endothelial cells via the reduction of DDAH expression as
well.24 Further, Luo et al.25 reported that angiotensin II
increased cellular ADMA levels via NADPH-derived reactive
oxygen species generation in cultured smooth muscle cells by
reducing DDAH expression and activity. As renal levels of 8-
OHdG were correlated with those of renal, but not plasma,
levels of ADMA (Figure 3b and c), and NAC pretreatment
completely restored the decreased levels of DDAH-1
(Figure 2a), the present study suggests that IR injury–
induced oxidative stress generation could stimulate renal
production of ADMA via suppression of DDAH-1.

There is accumulating evidence to show the active
participation of endothelial dysfunction in the progression
of renal IR injury.26 Reactivity to vasoconstrictive agents is
increased, whereas responsiveness to vasodilators is impaired
in the arterioles of postischemic kidney.7 Furthermore, NO
donors have been shown to exert beneficial effects on IR-
induced renal injury.11,23 In this study, the ratio of
phosphorylated to total eNOS, a marker of eNOS activity,22

was decreased in the IR-injured kidney. Infusion of
subpressor dose of ADMA tended to decrease the ratio and
increase 8-OHdG, and it further exacerbated renal dysfunc-
tion in IR-injured mice, all of which were completely blocked
in DDAH-1 Tg mice. These observations suggest that,
although the ratio of phosphorylated (ser1177) to total
eNOS could not necessarily reflect total enzymatic activity of
eNOS,22,27 IR injury–induced oxidative stress generation
could stimulate renal production of ADMA and subsequently
inactivate eNOS via suppression of DDAH-1, which may lead
to renal injury during IR. Therefore, our results are consistent
with the possibility that NO levels are decreased along with
changes in ADMA/DDAH, but direct measurements are
needed to determine whether this is true, because renal levels
of NO are increased rather than decreased during ische-
mia.28,29 Further, we also confirmed that urinary excretion
levels of cyclic guanosine monophosphate, another marker of
renal production of NO,30 were significantly decreased in the
IR-injured kidney (control vs. IR-injured mice; 10.1±1.22 vs.
0.34±0.24 nmol/mg Cr, Po0.01). However, there is another
possibility to explain DDAH-1 decrease and renal increase in
ADMA levels in the IR-injured kidney. Caglar et al.31 found a
significant association between ADMA and proteinuria in
CKD stage 1 patients, and improvement of proteinuria by
blockade of the renin–angiotensin system has been shown to
decrease ADMA levels in patients with CKD.32 Because
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Figure 8 | Effects of asymmetric dimethylarginine (ADMA)
infusion and dimethylarginine dimethylaminohydrolase
(DDAH)-1 overexpression on ischemia/reperfusion (IR)-induced
acute tubular necrosis (ATN). (a) The upper panel shows the
representative renal histology with periodic acid–Schiff (PAS) staining.
(b) The lower panel shows the quantitative data. Magnification�200.
The renal histology stained with PAS reagent. Renal damage included
detachment of epithelial cells of the tubuli, interstitial edema, and
many tubular cell casts. A higher score, therefore, reflects a higher
degree of renal injury. IR-injured kidneys increased the intensity of
renal damage. ADMA infusion further augmented the intensity, which
was prevented in DDAH-1 transgenic (DDAH-1 Tg) mice.
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DDAH is abundantly expressed in tubular cells, which might
be inactivated by proteinuria-elicited oxidative stress,
proteinuria could reduce tubular DDAH activity and
subsequently enhance ADMA accumulation. Indeed, we
have previously shown that proteinuria is associated with
ADMA levels in an adriamycin-treated rat model of
nephrotic syndrome.19 In this study, urinary albumin
excretion levels were elevated by IR injury (control vs. IR-
injured mice; 0.07±0.02 vs. 4.26±1.50 mg/mg Cr, Po0.01).
Thus, although we could not examine here the relationship
between albuminuria and renal ADMA levels because of the
lack of samples, albuminuria might cause ADMA generation
in the IR-injured kidney.

In the present study, we demonstrated for the first time
that a proteasomal inhibitor, MG-132, treatment significantly
restored the decrease in renal DDAH-1 levels, which was
associated with a reduction of plasma ADMA levels and
improvement of renal dysfunction (Figure 5). The proteaso-
mal degradation system is activated under oxidative stress
conditions,33 which could lead to the maintenance of cellular
homeostasis by removing damaged, oxidized, and misfolded
proteins.34 Therefore, the present findings suggest that
protein degradation rather than gene suppression might be
involved in DDAH-1 reduction in the IR-injured kidney.
As DDAH is downregulated by cytokines, including tumor
necrosis factor-a, MG-132 may be increasing DDAH-1 by
suppressing the inflammation.35,36 Several papers have
reported that proteosomal inhibitors have a protective role
against IR-induced renal dysfunction.37,38 Therefore, sup-
pression of proteasomal degradation of DDAH-1 might be a
novel therapeutic target for preventing the IR injury in the
kidney.

Our present study suggests that IR injury–induced
oxidative stress generation may reduce DDAH-1 expression
and resultantly cause ADMA accumulation, which could lead
to capillary loss and tubular necrosis in the kidney, thereby
being involved in renal IR injury. Recent evidence has
suggested that, in addition to direct tubular cell damage,
injury to the renal microvasculature also has a role in the
development and progression of ischemic AKI.5 In particular,
PTC loss could induce hypoxia and inflammatory reactions in
the tubulointerstitium, which could promote the scarring and
fibrotic processes in the damaged kidney.39 Indeed, a close
correlation between progressive interstitial injury and the loss
of PTC was shown in animal models of ischemic AKI.8,23

In this study, infusion of ADMA enhanced the IR-induced
PTC loss and ATN, whereas DDAH-1 Tg mice were resistant
to IR and failed to exhibit PTC loss and ATN. NO inhibits
apoptosis of endothelial cells40 and increases their prolife-
ration and migration.41,42 In addition, DDAH transfection
into cultured endothelial cells enhances vascular endothelial
growth factor mRNA expression and stimulates tube
formation of these cells.43 Moreover, in a murine model of
hindlimb ischemia, enhanced neovascularization and limb
perfusion were observed in DDAH-1 Tg mice, which was
associated with reduced plasma levels of ADMA.44

In summary, the present study has demonstrated for the
first time that IR-elicited oxidative stress might contribute to
the development and progression of AKI by promoting PTC
loss and tubular necrosis through the elevation of ADMA in
the kidney, probably via oxidative stress–induced proteoso-
mal degradation of DDAH-1. Substitution of DDAH-1
protein or enhancement of its activity may become a novel
therapeutic strategy for the treatment of renal IR injury.

MATERIALS AND METHODS
Animal preparation
Eight-week-old male C57BL/6J (wild) mice and DDAH-1 Tg mice
were used. Mice (n¼ 117) were subjected to ketamine anesthesia
(45 mg/kg intraperitoneally, Sankyo, Tokyo, Japan), and then to
45 min of bilateral renal ischemia by means of occlusion of bilateral
renal pedicle using vascular clips. Next, reperfusion was allowed for
1 h (n¼ 6), 6 h (n¼ 8), or 24 h (n¼ 22). To examine the effects of
ischemia only, wild mice (n¼ 24) were subjected to 45 min (0 h,
n¼ 12), 1 h (n¼ 6), and 6 h (n¼ 6) of bilateral renal ischemia. In a
second set of experiments, NAC (n¼ 6) (Nakarai Tesque, Kyoto,
Japan) was administered intraperitoneally 1 day (300 mg/kg of body
weight) and 15 min (300 mg/kg of body weight) before the vascular
clipping.45 In a third set of experiments, a proteasomal inhibitor
MG-132 (n¼ 5) (Calbiochem, Billerica, MA) or dimethyl sulfoxide
(n¼ 6) (Sigma, St Louis, MO) was administered 48 h (2 mg/kg body
weight) and 24 h (1 mg/kg body weight) before the clipping.38

Control mice (n¼ 18) were sham-operated with mobilization of
kidney but no clamping of renal pedicles. Then, the mice were killed,
plasma samples were obtained from each mice by retro-cardiac
puncture under general anesthesia, and the kidneys were removed.
Both plasma and kidney samples were frozen in liquid N2 and stored
at � 80 1C before using them for biochemical, western blot,
immunofluorescence, or immunohistochemical analyses.

In a fourth set of experiments, 8-week-old male mice and human
DDAH-1 Tg mice (n¼ 12) were used. DDAH-1 Tg mice on the
C57BL/6J background were purchased from Charles River (Charles
River Laboratories Germany, Sulzfeld, Germany). Offspring were
screened for transgene expression by PCR, as described previously.46

IR injury was performed in DDAH-1 Tg mice (n¼ 6) and wild mice
with (n¼ 10) or without (n¼ 22) ADMA infusion (0.0125 mg/kg/
min).47 Saline or ADMA (Sigma) was infused via an implanted
osmotic mini-pump (Alzet 1003D; DURECT, Cupertino, CA). The
pump was placed into the subcutaneous space of the mice
anesthetized with ketamine through a small incision in the back
of the neck. Twenty-four hours after the implanted pump, mice were
subjected to ketamine anesthesia, and then subjected to 45 min of
bilateral renal ischemia. One day after the reperfusion, blood
pressure (BP) was measured using a tail-cuff sphygmomanometer
using an automated system with a photoelectric sensor (BP-98A;
Softron, Tokyo, Japan). Next, the mice were killed. All experimental
procedures were conducted in accordance with the National
Institutes of Health Guide for the Care and Use of Laboratory
Animals and were approved by the ethical committee of our
institution.

Chemical analysis
Renal and plasma levels of ADMA were measured by high-
performance liquid chromatography as described previously.48

Serum BUN and Cr levels were measured with commercially
available methods as described previously.49
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Western blot analysis
The whole kidney tissues were homogenized and lysed with
25 mmol/l Tris–HCl (pH7.4) containing 1% Triton X-100, 0.1%
sodium dodecyl sulfate (SDS), 2 mmol/l EDTA, and 1% protease
inhibitor cocktail (Nakarai Tesque). Then, the supernatant was
separated by SDS–PAGE (polyacrylamide gel electrophoresis) and
transferred to PVDF membranes (Bio-Rad, Hercules, CA). The
membranes were then blotted with anti-DDAH-1, anti-PRMT-1,
anti-b-actin (Santa Cruz Biotechnology, Santa Cruz, CA), anti-8-
OHdG (Rockland Immunochemicals, Gilbertsville, PA), and anti-
phosphorylated eNOS, anti-eNOS (Cell Signaling, Danvers, MA)
antibodies. The aliquot of tissue homogenate was subjected to
immunoblotting using a primary antibody (1:500 dilution) and a
peroxidase-conjugated anti-goat, anti-rabbit, or anti-mouse second-
ary antibody (1:2000 dilution). The immune complexes were
visualized with an enhanced chemiluminescence detection system
(Amersham Bioscience, Buckinghamshire, UK).

Real-time RT-PCR
DDAH-1 gene expression levels were determined by quantitative
real-time RT-PCR with Fast Real-Time PCR System and TaqMan
Gene Expression Master Mix (Applied Biosystems, Foster City, CA)
according to the manufacturer’s protocols. GAPDH (glyceralde-
hydes-3-phosphate dehydrogenase) was used as an internal control.
Applied primers and TaqMan probes were as follows: DDAH-1
Mm01319453_m1, GAPDH Mm99999915_g1 (Applied Biosystems).

DDAH activity
Total DDAH enzymatic activity was measured as described
previously.50 In brief, homogenized kidney tissue (100 ml) was
incubated with 0.5 mmol/l ADMA for 2.5 h at 37 1C, following
preincubation with 50 units of urease for 15 min at 37 1C to remove
urea. The reaction was stopped by the addition of equal volume
of 10% trichloroacetic acid, and the supernatant was boiled with
diacetyl monoxime (0.8% (wt/vol)) in 5% acetic acid) and
antipyrine (0.5% (wt/vol) in 50% sulfuric acid). The amounts of
L-citrulline formed were determined with the spectrophotometric
analysis at 466 nm.

Immunofluorescence studies
Frozen tissues were sectioned at 4-mm intervals, fixed with acetone for
5 min, and mounted on glass slides. The sections were incubated with
blocking reagent (Dako, Glostrup, Denmark) for 1 h and incubated
overnight at 4 1C with rat monoclonal antibody raised against mouse
CD31, a marker of endothelial cells (BD Pharmingen, Franklin Lakes,
NJ) (1:50 dilution), as described previously.51 The sections were then
incubated with Alexa-Flour 488 anti-rat antibody (Cell Signaling)
(1:750 dilution) for 4 h at room temperature. Rarefaction of CD31-
positive capillaries was assessed semiquantitatively by fluorescence
intensity using a score from 0 to 4. A score of 0 was assigned if a
homogenous positivity of all peritubular capillaries was present
(normal finding). Scoring was 1 if a single CD31-negative segment was
detected, 2 if CD31 was negative in up to 25% of the tissue section, 3
if negative in 25–50%, and 4 if CD31 staining was completely absent.
A higher score, therefore, reflects a higher degree of capillary loss.
PTC rarefaction was evaluated in at least 10 cortical fields.51,52

Renal histological analysis
Kidneys were obtained from each mice, cut transversally, fixed in
Bouin’s solution, followed by 10% buffered formalin, and embedded

in paraffin. Three-micrometer paraffin sections stained with
periodic acid–Schiff were used for morphology analysis of kidneys
with light microscopy. A semiquantitative score for ATN was
assigned as described by Wang et al.53 For each mouse, at least 10
fields were examined. The percentages of tubules that displayed
cellular necrosis, loss of brush border, cast formation, vacuolization,
and tubule dilation were scored as follows: 0, none; 1, o10%; 2,
11–25%; 3, 26–45%; 4, 46–75%; and 5, 476%.

Statistical analyses
All data were expressed as mean±s.d. Experimental groups were
compared by analysis of variance and, when appropriate, with
Scheffe test for multiple comparisons. Linear regression analysis was
performed between renal or plasma levels of ADMA and renal levels
of 8-OHdG. A level of Po0.05 was accepted as statistically
significant.
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