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Abstract 

Spontaneous hypertensive rats (SHR) are widely used as a model of attention deficit 

hyperactivity disorder (ADHD) as their ADHD-like behaviors are restored by 

methylphenidate (MPH). However, a postnatal neural development in SHR is unknown. 

We performed whole cell patch clamp recordings from locus coeruleus (LC) neurons in 

neonatal (P 3–5), juvenile (P 21–28) and adult (P 49–56) SHR and age-matched Wistar 

rats to evaluate 1- and 2-adrenergic receptor (ARs) activities at each developmental 

period. LC neurons in neonatal Wistar rats and SHR showed no difference in resting 

membrane potential (RMP) and spontaneous firing rate (SFR), while juvenile and adult 

SHR LC neurons showed depolarized RMP and faster SFR than in Wistar rats. 

Blockade of 1-AR activity by prazosin hyperpolarized the membrane and abolished 

spontaneous firings in all developmental periods in SHR LC neurons, but not in juvenile 

and adult Wistar rats. 1-AR stimulation by phenylephrine (PE) evoked an inward 

current in juvenile LC neurons in SHR, but not in juvenile Wistar rats. This PE-induced 

inward current was abolished by non-selective cation channel blockers. By contrast, 

2-AR stimulation-induced outward currents in the presence of an 1-AR antagonist 

were equivalent in SHR and Wistar LC neurons. These data suggest that Wistar LC 

neurons lose 1-AR function during development, whereas 1-ARs remain functional 

in SHR LC neurons. Thus, persistent intrinsic activity of 1-ARs may be a neural 

mechanism contributing to developmental disorders in juvenile SHRs.  
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Introduction 

The functional role of 1- and 2-adrenergic receptors (ARs) is a focus of cognitive 

and sustained attention in attention deficit hyperactivity disorder (ADHD). The 1- and 

2-ARs have opposing effects on cognitive function in prefrontal cortex neurons in 

Sprague-Dawley (SD) rats. Activation of 2-ARs improves working memory 

performance in rats, whereas high levels of noradrenalin release impair cognitive 

function through actions at 1-ARs (Arnsten et al. 2007; Birnbaum et al. 1999). This 

1-AR activation is considered necessary for methylphenidate (MPH)-induced 

improvement in sustained attention in SD rats (Berridge et al. 2012; Osborne et al. 

2002).  

The nucleus locus coeruleus (LC) is the major noradrenergic nucleus of the brain, 

and provides the noradrenergic projections to multiple brain areas including the 

prefrontal cortex (Aston-Jones et al. 1991; Foote et al. 1980). Resting membrane 

potential and a pattern of spontaneous firing in LC neurons are associated with arousal 

and vigilance, and are potentially affected by 1- and 2-AR activation (Aston-Jones 

and Bloom 1981a, 1981b; Aston-Jones and Cohen 2005; Foote et al. 1980; Howells et 

al. 2012). Application of clonidine to rat LC neurons activates a class of G-protein 

coupled inwardly rectifying potassium (GIRK) channels via the 2-AR, resulting in 

membrane hyperpolarization and inhibition of the spontaneous firing of the action 

potentials (APs) (Aghajanian and VanderMaelen 1982; Arima et al. 1998; Williams et 

al. 1985, 1988). By contrast, Williams and Marshall (1987) reported that 1-AR 

agonists such as phenylephrine (PE) induced membrane depolarization and accelerated 

spontaneous firing rates by activating unknown cation channels in neonatal rat LC 



 
 

neurons. While 1-ARs are known to couple with a Gq protein, it remains unclear what 

cationic channel is involved in the PE-induced membrane depolarization. Moreover, 

they reported that the effects of 1-AR on membrane potential were only detected in 

LC neurons from neonatal rats, but not from older rats (> P21). These studies suggest 

that the activities of LC neurons under control of both 1- and 2-ARs could be altered 

during postnatal developmental periods (neonatal, juvenile and adult).  

The spontaneously hypertensive rat (SHR) is the most widely used animal model 

of ADHD (Adriani et al. 2003; Russell 2007; Sagvolden 2000; Sagvolden et al. 1993). 

A juvenile SHR (P21–28) starts to display behaviors characteristic of ADHD with no 

hypertension, which can be restored by intra-abdominal injection of therapeutic agents 

such as MPH (Adriani et al. 2003). Although there are several behavioral studies using 

SHR, electrophysiological studies using brain slice preparations are limited. In 

particular, SHR LC activities in the different developmental periods are critical to 

understanding local neural communication in developmental disorders. In the present 

study, we evaluated the 1- and 2-AR contribution to the membrane properties of LC 

neurons using neonatal, juvenile, and adult SHR and compared them with age-matched 

Wistar rats. We also explored the unknown cationic channel activated by 1-AR 

stimulation. 



 
 

Methods 

Slice Preparation  

All experimental procedures were approved by the Institutional Animal Use and Care 

Committee of Kurume University School of Medicine and were performed in 

accordance with the guiding principles of the Physiological Society of Japan. All 

animals were housed in a controlled environment room under a 12:12 h light-dark cycle 

with free access to food and water. Male Wistar rats and SHRs during postnatal day 3–5 

(P3–5), postnatal day 21–28 (P21–28) and postnatal day 49–56 (P49–56) were 

decapitated under pentobarbital sodium anesthesia (50 mg/kg, i.p.). The brains were 

quickly removed and immersed for 8–10 s in a cooled sucrose artificial cerebrospinal 

fluid (ACSF, 4–6 C) that was prebubbled with 95% O2-5% CO2. Horizontal brain 

slices (240 m thick) were cut with a vibrating microtome (VT1000s; Leica, Wetzlar, 

Germany) in cooled sucrose ACSF. The sucrose ACSF was composed of 199 mM 

sucrose, 2.5 mM KCl, 2.4 mM MgCl2, 23.8 mM NaHCO3, 12.5 mM NaHPO4 and 10 

mM D-glucose. Brain slices were left to recover for 1 h in oxygenated normal ACSF at 

32 C. A hemisected slice was then transferred to a recording chamber and submerged 

in the normal ACSF at 32–34 C with a perfusion rate of 2.5 ml/min. The composition 

of the normal ACSF was 126 mM NaCl, 2.5 mM KCl, 2.4 mM CaCl2, 1.2 mM MgCl2, 

21 mM NaHCO3, 1.2 mM NaHPO4 and 11 mM D-glucose (pH 7.4, 279–288 mOsm).  

Electrophysiological Recordings 

Whole cell recordings were made from LC neurons using the slice patch technique. 

Patch pipettes were prepared from borosilicate glass capillaries with a micropipette 

puller (PP83; Narishige, Tokyo, Japan). Patch pipettes were filled with an internal 

solution of 140 mM K-gluconate, 10 mM NaCl, 0.3 mM CaCl2, 1 mM MgCl2, 1 mM 



 
 

EGTA, 0.25 mM GTP and 10 mM HEPES (pH 7.3 adjusted by KOH, 280–285 mOsm). 

The tip resistance of the whole cell patch pipette was 3–5 M. The liquid junction 

potential of −10.8 mV for K-gluconate was corrected. Whole cell recordings were 

sampled at 10 kHz using an Axopatch 200B amplifier (Axon Instruments, Sunnyvale, 

CA, USA). Spontaneous APs and resting membrane potential (RMP) were recorded 

from LC neurons using the whole cell current-clamp mode. Voltage clamp was 

analyzed at a holding potential (Vh) of -60 mV. Membrane potential and current were 

filtered at 1 kHz for analysis with pClamp software (Axon Instruments). The drugs used 

in the present study were guanosine 5’- triphosphate sodium salt hydrate (GTP), 

ethylene glycol-bis (2-aminoethylether)-N,N,N’,N’-tetraacetic acid (EGTA), 

epinephrine (noradrenaline; NA), yohimbine, prazosin, phenylephrine (PE), 

2-aminoethyl diphenylborinate (2-APB), flufenamic acid (FFA), methylphenidate 

(MPH) (Sigma, St. Louis, MO, USA), BaCl2 (Wako, Tokyo, Japan) and tetrodotoxin 

(TTX) (Nacalai Tesque, Kyoto, Japan). Yohimbine, prazosin, 2-APB and FFA were 

dissolved in dimethyl sulfoxide (DMSO), with a final concentration of 0.02% DMSO.  

Immunohistochemistry in LC 

Six rats were anesthetized and transcardially perfused with heparinized saline followed 

by 300 ml of 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB, pH 7.4). 

Each brain was removed and a section containing the LC was cut and post fixed in 4% 

PFA at 4 C for 18 h. The section was cryoprotected in 0.1 M PB containing 30% (w/v) 

sucrose for 18 h. The horizontal section was further cut into 70-m-thick slices on a 

freezing microtome. The slices were incubated in 5% normal donkey serum for 1 h at 

room temperature (RT). Free-floating slices were incubated with a polyclonal rabbit 

anti-1A-adrenoceptor antibody (1:200; Alomone, Jerusalem, Israel), a polyclonal 



 
 

rabbit anti-2B-adrenoceptor antibody (1:200; Alomone) or a monoclonal 

anti-tyrosine-hydroxylase antibody (1:2000; Sigma) for 24 h at 4 C in 

phosphate-buffered saline (PBS) containing 0.5% (v/v) triton (TM) X-100, 1% (w/v) 

bovine serum albumin and 0.1% (w/v) NaN3. After several rinses in PBS, the slices 

were incubated in Alexa Fluor® 488 Goat Anti-Rabbit IgG (1:1000; Invitrogen, 

Carlsbad, CA, USA) and Alexa Fluor® 568 Goat Anti-Mouse IgG (1:500; Invitrogen) 

for 4 h at RT. Nuclei were stained using DAPI reagent for 1 h at RT. After washing, the 

specimens were mounted using PermaFluor aqueous mounting medium (Thermo, 

Fremont, CA, USA). The preparations were examined on a FluoView 1000 laser 

scanning confocal microscope system (Olympus, Tokyo, Japan). The controls included 

omission of the primary antibody.  

Statistical Analyses  

Each experimental value was presented as the mean±SE, and data were analyzed by 

unpaired Student’s t-test. All statistical comparisons were made using Prism version 4 

software (GraphPad, San Diego, CA, USA). P values <0.05 were considered 

statistically significant.  



 
 

Results 

To examine LC neuron membrane properties during postnatal development, we 

compared the RMP and spontaneous firing rate (SFR) at three developmental time 

points, P 3–5 (neonatal), P 21–28 (juvenile) and P 49–56 (adult), using a whole cell 

patch clamp technique (Fig. 1). Neonatal RMP was −54.8±0.8 mV and −53.5±1.0 mV 

in Wistar rats (n=10) and SHR (n=8), respectively. The SFR was 0.95±0.23 Hz and 

1.05±0.56 Hz in Wistar rats (n=10) and SHR (n=8), respectively (Fig. 1A). In juvenile 

animals, RMP was −57.4±0.7 mV (n=18) in Wistar rats and −53.1±1.2 mV (n=19) in 

SHR, and SFR was 0.57±0.06 Hz (n=18) in Wistar rats and 1.23±0.17 Hz (n=19) in 

SHR (Fig. 1B). In adult animals, RMP was -57.2±0.6 mV (n=12) in Wistar rats and 

-54.3±0.9 mV (n=12) in SHR, and SFR was 0.65±0.16 Hz (n=12) in Wistar rats and 

1.7±0.13 Hz (n=12) in SHR (Fig. 1C). In the neonate, RMP and SFR were not 

statistically different between SHR and Wistar rat LC neurons, while RMP was 

significantly depolarized (P<0.01) and SFR was significantly faster (P<0.01) in SHR 

LC neurons in the juvenile and adult periods when compared with age-matched Wistar 

rat. Both 1- and 2-ARs are known to be involved with RMP of LC neurons via a 

cation channel and an inwardly rectifying potassium channel, respectively. Williams 

and Marshall (1987) reported that an inward current coupled with 1-ARs is a 

characteristic membrane property in neonatal LC neurons.  

Next, we examined a possible involvement of 1-ARs in the membrane potential 

in juvenile and adult rat LC neurons. First, we tested the effect of prazosin on RMP and 

spontaneous firing. Prazosin (500 nM) induced membrane hyperpolarization and 

inhibition of spontaneous firing in neonatal rat LC neurons (Wistar: 5.5±0.7 mV, n=8; 

SHR: 5.9 ± 0.6 mV, n=8; P=0.58, Fig. 2A). Juvenile SHR LC neurons also exhibited 



 
 

membrane hyperpolarization (6.9±0.7 mV, n=7), which was not observed in 

age-matched Wistar rats (n=6) (Fig. 2B). We also confirmed that LC neurons obtained 

from adult SHRs showed hyperpolarization by prazosin (6.3±0.8 mV, n=5), which was 

not observed in adult Wistar rats (n=7) (Fig. 2C). These results show that the membrane 

properties of juvenile and adult SHR are qualitatively equivalent. It was previously 

reported that SHR (> P35) become hypertension, which could alter a central and/or a 

peripheral catecholaminergic system. We performed the following experiments using 

neonatal and juvenile SHR. In neonatal rats, prazosin (500 nM) in the presence of TTX 

(1 µM) and yohimbine (1 µM) induced outward currents in LC neurons (Wistar: 

13.8±1.3 pA, n=7; SHR: 17.2±2.1 pA, n=7; P=0.44, Fig. 3A). In juvenile rats, while 

prazosin also evoked an outward current (18.7±1.6 pA, n=7) in SHR LC neurons, 

Wistar LC neurons were not affected by prazosin (n=8) (Fig. 3B). Next, we tested the 

effect of PE, an 1-AR agonist. Bath application of PE (30 µM) in the presence of 

yohimbine (1 µM), an 2-AR antagonist, caused inward currents accompanied by an 

increase in the conductance in LC neurons in neonatal rats (Wistar: –20.2±0.5 pA, 

n=10; SHR: –22.9±1.4 pA, n=16; P=0.117, Fig. 4A) and in juvenile SHR (−17.9±1.4 

pA, n=21). However, no juvenile Wistar LC neurons (n=15) showed an inward current 

by PE (Fig. 4B). A steady inward current with no obvious desensitization was observed 

by continuous application of PE (30 µM) up to 15 min in juvenile SHR LC neurons 

(data not shown). This PE-induced inward current was blocked by the 1-antagonist, 

prazosin (500 nM) (Fig. 5A).  

An 1-AR is known to couple with Gq protein (Gq), which was reported to 

activate non-selective cation channels (NSCC) (Clapham 2003; Montell 2005). Thus, 

we examined whether the NSCC blockers 2-APB and FFA could abolish the 



 
 

PE-induced inward current. When the PE-induced inward currents reached the 

maximum amplitude, addition of prazosin, 2-APB, or FFA to the superfusate solution 

successfully blocked the inward current in juvenile SHR LC neurons (Prazosin: 

2.42±3.3 pA, n=8; 2-APB: 12.4±1.9 pA, n=9; FFA: 9.1±3.3 pA, n=8; Fig. 5A and B). 

These results suggest an involvement of NSCC via 1-AR activation on RMP in LC 

neurons in neonatal Wistar and SHR rats, and in juvenile SHR rats, but not in juvenile 

Wistar rats. 

An inwardly rectifying potassium channel (GIRK) coupled to 2-ARs is known to 

contribute to RMP in rat LC neurons. To evaluate the amount of outward current via 

2-AR under physiological conditions, we examined the role of 2-ARs on the 

membrane current of LC neurons from juvenile SHR and Wister rats. High-dose NA 

(>10 µM) induced a smaller outward current in juvenile SHR LC neurons compared 

with Wistar rats (Fig. 6C). Low-dose NA (3 µM) induced an inward current in juvenile 

SHR LC neurons only (−20.2±2.2 pA, n=6), but not in Wistar rats (n=10) (Fig. 6A and 

B). Dose-dependent effects of NA are illustrated in Figure 6C. NA (3 µM) evoked an 

inward current, while the NA (>3 µM) evoked an outward current in juvenile SHR LC 

neurons. By contrast, all juvenile Wistar neurons showed an outward current by NA (3–

300 µM). 

Surprisingly, NA (3–100 µM)-induced outward currents obtained in the presence 

of prazosin (500 nM), an 1-antagonist, were virtually equivalent between juvenile 

SHR and Wistar LC neurons (Fig. 6D). A larger outward current was obtained by NA 

(≥10 µM) in the presence of prazosin from juvenile SHR LC neurons. Additionally, the 

Ba2+, GIRK inhibitor, sensitive NA current was identical in both SHR and Wistar 

juvenile LC neurons (data not shown). We also examined the effect of MPH (30 µM) on 



 
 

the membrane current in LC neurons using whole cell voltage clamp recording at a Vh 

of −60 mV. All LC neurons from juvenile Wistar rats showed outward currents 

(36±5.01 pA, n=15). By contrast, bath application of MPH to juvenile SHR caused 

varied currents depending on the cells (-35 to +30 pA; mean±SE = -2.0±5.0 pA; n=15 

from six rats); inward current in five cells, outward current in five cells, and no effect in 

five cells. Lower concentrations of MPH (1 µM) induced no obvious current in both 

Wistar and SHR (Fig. 6E).  

Finally, we tested the possibility that 1-ARs of LC neurons were absent in 

juvenile Wistar rats using immunohistochemistry for 1A- or 2B-AR (green), 

tyrosine-hydroxylase (TH: red) and cell nuclei (blue). TH immunoreactivity in the 

region of the LC neurons is shown in Figure 7a and d. Two distinct 1A- and 2B-ARs 

were located within a field of dense TH positive neurons in both SHR and Wistar rats 

(Fig. 7c and f).  



 
 

Discussion 

In the present study we examined the membrane properties of LC neurons in SHR and 

Wistar rats at different postnatal developmental stages. SHR are widely used as an 

ADHD model animal as they display ADHD-like characteristic behaviors such as 

hyperactivity and impulsivity (Adriani et al. 2003; Russell 2007; Sagvolden 2000; 

Sagvolden et al. 1993) in the juvenile period (P21–28) before development of 

hypertension (> P35). In previous reports, the Wistar Kyoto rat (WKR) strain was used 

as a normotensive control strain for the SHR. However, the WKR was recently reported 

to represent a type of depression animal model (Andrus et al. 2012; Hurley et al. 2013; 

Yamada et al. 2013). Therefore, we used Wistar rats as control animals in the present 

study.  

We explored the local neural mechanisms in LC underlying the developmental 

disorder in SHR. It was reported that the firing patterns of LC neurons are critical for 

attention and vigilance. Two firing patterns of LC neurons have been reported: phasic 

and tonic. Animals showed good performance in selective attention tasks during phasic 

firing, while the performance became poor when LC neurons showed tonic firing 

(Aston-Jones and Bloom 1981a, 1981b; Aston-Jones and Cohen 2005; Foote et al. 

1980; Howells et al. 2012; Rajkowski et al. 1994). Although we did not analyze the 

firing patterns of LC neurons, the resting membrane potential will change the firing 

frequency and possibly alter the firing patterns. A depolarized membrane and faster 

firing frequency in juvenile SHR LC neurons would affect cognitive function in 

juvenile SHR. RMP and SFR in neonatal LC neurons were not statistically different 

between SHR and Wistar rats, whereas juvenile and adult SHR showed a significantly 



 
 

depolarized membrane potential and an increase in SFR when compared with 

age-matched Wistar rats.  

The LC is the major noradrenergic nucleus in the central nervous system (CNS). 

We examined the involvement of 1- and 2-ARs in the depolarized membrane 

potential observed in juvenile SHR LC neurons. 1-ARs are Gq-coupled, and have been 

reported to cause membrane depolarization by both augmentation of a non-selective 

cationic conductance and inhibition of a potassium conductance (Montell 2005; Wu et 

al. 2010). Activation of 1-ARs in neurons leads to the production of IP3 and 

diacylglycerol (DAG), which mobilizes Ca2+ from internal Ca2+ stores and Ca2+ influx 

from outside the cell through a non-selective cation channel (NSCC). Our results 

showed that PE-induced an inward current in juvenile and neonatal SHR, as well as in 

neonatal Wistar LC neurons, but not in juvenile Wistar LC neurons. The PE-induced 

inward current of juvenile SHR LC neurons was inhibited by prazosin, as well as by the 

NSCC channel blockers 2-APB and FFA. 2-APB and FFA are also used as TRP 

channel blockers. TRP channels can be activated by 1-ARs through the Gq protein. 

TRP channels are a family of NSCC that can form receptor-operated channels and 

store-operated channels (Clapham 2003; Clapham et al. 2003; Montell 2005; 

Venkatachalam and Montell 2007; Wu 2010). PE was reported to activate an unknown 

cation channel in neonatal rat LC neurons (Williams and Marshall 1987). It is possible 

that the PE-induced inward current in LC neurons may be due to activation of NSCC. In 

this study, NSCC blockers revealed a small outward current following inhibition of the 

PE-induced inward current. Moreover, prazosin, an 1-AR antagonist, in the presence 

of the 2-AR antagonist, induced an outward current in juvenile SHR LC neurons, 



 
 

suggesting that 1-AR activity may involve resting membrane potential in juvenile 

SHR LC neurons. When this intrinsic 1-AR activity is inhibited by NSCC blockers or 

prazosin, the outward current is revealed. This persistent intrinsic 1-AR activity in 

juvenile SHR could produce membrane depolarization in LC neurons when compared 

with juvenile Wistar rats. Moreover, the depolarized membrane potential through 

1-AR activation may have induced the increase of spontaneous firing in juvenile SHR 

LC neurons. 

The 2-AR channel is coupled with a G-protein inwardly rectifying potassium 

(GIRK) channel. 2-AR-activated GIRK channels may also contribute to resting 

membrane potential in LC neurons. 2-AR activation hyperpolarizes the membrane and 

leads to a reduction in the firing rate. 2-AR stimulation by NA is known to activate 

GIRK channels and produce outward currents at membrane potentials positive to Ek 

(Aghajanian and VanderMaelen 1982; Arima et al. 1998; Williams et al. 1985, 1988). A 

low concentration of NA (3 µM) induced inward currents in juvenile SHR LC neurons, 

but not in juvenile Wistar LC neurons. NA (3–100 µM)-induced outward currents in the 

presence of prazosin in both juvenile SHR and Wistar rat LC neurons that were virtually 

identical. These results indicate that the 2-AR coupled with the GIRK channel was 

equivalent in SHR and Wistar rats in juvenile LC neurons. While MPH (30 

µM)-induced currents varied from the inward to outward currents in juvenile SHR, all 

Wistar LC neurons exhibited the outward current. These results suggest that the total 

current evoked by NA or MPH consists of the sum of 1- and 2-AR-activated currents 

in juvenile SHR.  



 
 

Previous studies have confirmed the existence of 1-ARs in brain slice 

preparations from the adult rat using PCR (Osborne et al. 2002; Pullen et al. 1985). 

Immunohistochemical results also illustrated the presence of both 1- and 2-ARs in 

juvenile Wistar and SHR LC neurons, suggesting that the attenuation of functional 

1-ARs in developed Wistar LC neurons might relate to loss of secondary messenger. 

However, the function of 1-ARs in the adult rat LC neurons has not been previously 

reported. By examining the membrane properties of LC neurons in SHR and Wistar rats 

in postnatal developmental stages, we found a persistent 1-AR activity in SHR, which 

disappeared in Wistar rats. It is possible that the delayed maturation may have 

influenced the persistent 1-AR activity in juvenile SHR. In fact, Shaw et al (2007) 

reported that human ADHD patients showed delayed maturation of the cortex and 

striatum. In voltage clamp experiments, we avoided using older SHR (>P35) as they 

develop hypertension, which might alter the adrenergic system. RMP and SFR were not 

statistically different between juvenile and adult SHR LC neurons. Nevertheless, we 

confirmed that LC neurons obtained from older SHRs (P49–56) could also induce 

hyperpolarization by prazosin as well as for juvenile SHRs. Thus, these data suggest 

that 1-ARs remain in the older SHR LC neurons.  

Activation of 2-ARs improves working memory performance in rats, and 2-AR 

agonists can improve attention and behavioral inhibition. High levels of noradrenalin 

release can impair cognitive function through 1-AR activation (Arnsten and Pliszka 

2011; Arnsten et al. 2007; Birnbaum et al. 1999). By contrast, 1-AR activation is 

necessary for MPH-induced improvement in sustained attention (Berridge et al. 2012). 

Low-dose MPH increases NA in the prefrontal cortex and improves cognitive function 



 
 

(Berridge et al. 2006; Devilbiss and Berridge 2006). In support of these reports, we 

demonstrated that stimulation of 1- and 2-ARs has counteracting effects, and that MPH 

induced an inward current in juvenile SHR LC neurons. LC neurons also project to the 

prefrontal cortex. Thus, 1-AR activity in LC neurons may affect the release of NA in the 

prefrontal cortex. Moreover, the 1-AR mRNA levels decrease during postnatal 

development in SD rats (Nakamura et al. 1988; Osborne et al. 2002; Williams and 

Marshall 1987). On the other hand, there are some reports that MPH can improve 

cognitive function in healthy adults (Agay et al. 2010; Camp-Bruno and Herting 1994; 

Linssen et al. 2011; Smith and Farah 2011; Tomasi et al. 2010). We demonstrated that 

functional 1-ARs in the LC are attenuated during the developmental period in Wistar 

rats, while 1-ARs remain functional in other CNS areas including the medial prefrontal 

cortex (mPFC) in adult animals. The mPFC is a critical area of the cerebral cortex 

involved in cognitive function (Berridge et al. 2006; Devilbiss and Berridge 2006). 

Noradrenergic activity at 1-ARs in the mPFC facilitates cognitive performance (Lapiz et 

al. 2006). Devoto et al. (2005) also demonstrated that electrical stimulation of the LC 

increased NA and DA in the mPFC using adult SD rats. Therefore, the effects of MPH on 

cognitive function in healthy adulthood could result from the action of MPH on alpha-NA 

and/or DA receptors in the mPFC. Cognitive function consists of a variety of higher brain 

functions including screening targets, sustained attention, working memory, and executive 

function. NA and DA receptors are involved in these cognitive functions. Of these various 

functions, some may be improved by 1-AR, 2-AR and DA receptors, while some may 

not. The role of 1- and 2-ARs and DA receptors in complex cognitive function requires 

further examination. 



 
 

  

In the present study, we demonstrated that functional 1-ARs persisted in juvenile 

and adult SHR LC neurons, which may cause membrane depolarization and increase 

spontaneous firing. Although the noradrenergic receptor has three subtypes (1, 2 and 

), in the present study we only focused on the 1- and 2-ARs in LC neurons. The 

noradrenergic 1-ARs exist primarily at postsynaptic sites, whereas 2-ARs exist at 

both pre- and postsynaptic sites (Berridge and Waterhouse 2003). Noradrenergic signals 

are thought to be inhibited by an auto-receptor via an axon-recurrent collateral. 

Persistent functional 1-ARs in LC neurons and a projecting axon terminal that 

counteracts 2-ARs in the LC soma could interfere with the auto-receptor. Weakened 

2 noradrenergic signaling by persistent 1-AR function could interrupt the action of 

LC neurons on cognitive function and sustained attention in juvenile SHR. 
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Figure Captions 

 

Fig. 1. Representative traces of spontaneous firing of LC neurons from A) neonatal (P 

3–5), B) juvenile (P 21–28) and C) adult (P 49–56) rats. Note the reduced firing rate in 

juvenile and adult Wistar rats, but maintenance of faster firing rate in juvenile and adult 

SHR. 

 

Fig. 2. Effect of prazosin (500 nM) on membrane potential and spontaneous firing of 

LC neurons. Representative traces were obtained from A) neonatal, B) juvenile and C) 

adult rats (Neonatal: Wistar n=8 from five rats, SHR n=8 from four rats; Juvenile: 

Wistar n=6 from five rats, SHR n=7 from four rats; Adult: Wistar n=7 from four rats, 

SHR n=5 from four rats). Note that all LC neurons except from juvenile and adult 

Wistar rats were hyperpolarized by prazosin. Juvenile and adult Wistar LC neurons 

were prazosin resistant. 

 

Fig. 3. Effect of prazosin (500 nM) on membrane current of LC neurons. Representative 

traces of prazosin-induced current from A) neonatal and B) juvenile animals in the 

presence of yohimbine (1 µM) and TTX (1 µM). Prazosin-induced an outward current 

in all LC neurons, except from juvenile Wistar rats. C) Summary of prazosin-induced 

outward currents (Neonatal: Wistar n=7 from four rats, SHR n=7 from four rats; 

Juvenile: Wistar n=8 from four rats, SHR n=7 from four rats). Juvenile Wistar LC 

neurons showed a significantly small outward current. Data are mean±SE. **P<0.01. 

 

 



 
 

Fig. 4. Effect of phenylephrine (PE, 30 µM) on membrane current of LC neurons from 

A) neonatal and B) juvenile rats. Voltage clamp recordings were performed at a Vh -60 

mV. The bar indicates the period of superfusion. PE in presence of yohimbine (1 µM) 

and TTX (1 µM) induced an inward current in neonatal and juvenile SHR LC neurons, 

but not in juvenile Wistar rat LC neurons. C) Summary of PE-induced inward currents 

(Neonatal: Wistar n=10 from six rats, SHR n=16 from nine rats; Juvenile: Wistar n=15 

from four rats, SHR n=21 from six rats). Data reported as mean±SE. **P<0.01. 

 

Fig. 5. Effect of 1-AR and NSCC antagonists on the PE-induced inward current. A) 

Prazosin terminated PE-induced inward current. NSCC antagonists B) 2-APB and FFA 

abolished the PE-induced inward current in juvenile SHR LC neurons. C) Summary of 

effect of test drugs on PE-induced inward currents. Each column represents the 

mean±SE (prazosin n=8 from five rats, 2-APB n=9 from four rats, FFA n=8 from four 

rats). 

 

Fig. 6. Effect of noradrenaline (NA) on the membrane current of LC neurons. A) 

Current recordings from juvenile Wistar LC neurons and B) juvenile SHR LC neurons. 

C) Concentration response curve of NA-induced outward currents. The amplitudes of 

outward currents were 29.9±0.6, 48.7±2.6, 94.4±6.5, 107.8±6.3 and 108.7±10.1 pA in 

juvenile Wistar rat LC neurons and 13.5±0.4, 44.7±2.6, 73.2±10.4, 77.8±5.9 and 83.5± 

2.7pA in juvenile SHR LC neurons following application of 3, 10, 30, 100 and 300 µM 

of NA, respectively. D) Concentration response curve of NA-induced outward current 

in the presence of prazosin (500 nM). The amplitudes of outward currents were 

21.6±3.3, 61.6±2.9, 100.5±15.2 and 125.7±11.9 pA in juvenile Wistar rat LC neurons 



 
 

and 21.6±1.7, 60.2±2.3, 102.7±10.8 and 118.8±8.7 pA in juvenile SHR LC neurons 

following application of 3, 10, 30 and 100 µM of NA, respectively. Each point 

represents the mean±SE obtained from 4–8 LC neurons. Differences between Wistar 

(●) and SHR (○) rats at specific concentrations were analyzed by Student’s unpaired 

t-test. *P<0.05, **P<0.01. E) Summary of the effect of methylphenidate (30 µM) on the 

membrane current of juvenile LC neurons. (Wistar n=15 from five rats, SHR n=15 from 

six rats). **P<0.01. 

 

Fig. 7. Confocal micrographs from horizontal LC sections. Sections were triple stained 

for TH (a, d red), 1A and 2B-AR (b, e green) and nuclei (blue). Location of 1A 

and 2B-AR within a field of dense TH neurons in both rats. c and f) Merged image. 

Scale bar, 100 µM.  
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