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Abstract

Often, more than twenty generic (GE) drugs are developed for one brand name
(B-N) drug. Each GE drug has passed the trial of bio-equivalence to the B-N drug,
and its characteristics (which are generally expressed by AUC, Cmax, and Tmax,
or one of its subsets) are close to the values for the B-N drug in each trial. However,
trial-to-trial variation in the AUC, Cmax, and Tmax values is substantial. A model
is developed in this paper to extract the distance between the characteristics of the
GE and B-N drugs by adjusting for trial-to-trial variation. A method is proposed
in this paper to use this distance for selecting better GE drugs from the list of
candidates.

Key Words and Phrases: Brand-name drug, Bio-equivalence, Cross-over design, Random effect

model.

1. Introduction

Generic (GE) drugs are drugs that are bio-equivalent to a brand name (B-N) drug
and have been developed after the termination of the patent of the B-N drug. Often
there are twenty or more GE drugs developed for each B-N drug. For example, for
Amlodipine besylate, the B-N drug to treat hypertension and angina, 27 GE drugs are
on sale in the market in the US and 40 are on sale in Japan as of September, 2012. The
approval and license for production and sale of a GE drug are given to companies by
a country’s drug administration after confirming the bio-equivalence of the drug to the
B-N drug. AUC and Cmax are used for testing bio-equivalence. A brief review of the
test of bio-equivalence—AUC, Cmax, and Tmax—will be given below in Section 2. The
AUC, Cmax, and Tmax values for each GE drug are available from its package insert.
Note that the package insert is referred to as the patient information leaflet in Europe
(Schumann, 2006).

The use of GE drugs is often recommended to reduce medical costs, and pharmacists
and/or medical doctors are asked to select a GE drug from among many candidates.
However, it is not easy to do so since no means have been developed except for comparing
their costs. In this paper, we develop a method that could be used for selecting better
GE drugs from the list of candidates.
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We suppose in this paper that the characteristics of a drug are given by a subset
of AUC, Cmax, and Tmax, and that the drug that has closer characteristics to the B-N
drug is the better drug, and accordingly, the drug that has distant characteristics from
the B-N drug is a poor drug. Note that the AUC, Cmax, and Tmax values for the GE and
B-N drugs are fairly close within each trial, since GE drugs in the market have passed the
test of bio-equivalence to the B-N drug, but often trial-to-trial variation in these values
is substantial; for example, the AUC values for the 21 GE drugs that will be discussed
in the application section in this paper distribute in the range of 18.57 and 85.93 (see
Table 5). We develop a method to measure the closeness of the characteristics of the
GE and B-N drugs, adjusting for trial-to-trial variation and also taking into account the
property of the design used in bio-equivalence trials. A method is proposed to use the
distance for selecting better GE drugs from the list of candidates.

In Section 2, we give a brief review of cross-over designs employed in trials of bio-
equivalence, and of the method of testing bio-equivalence. In Section 3, we introduce a
mathematical model to represent K trials of bio-equivalence taking into account trial-
to-trial variation. In Section 4, a method of estimating the distance of characteristics
between the GE and B-N drugs is introduced. In Section 5, the ranking of GE drugs
based on those distances and errors in ranking are discussed. A method of selecting
better GE drugs is proposed in Section 6. Finally in Section 7 the proposed method is
applied to 21 GE drugs that have passed bio-equivalence trials to Pravastatin, the B-N
lipid-lowering compound.

2. Trial of bio-equivalence

The trial of bio-equivalence is conducted in a cross-over design. We briefly review
the design and the trial of bio-equivalence in this section.

2.1. Cross-over design

The two-period two-treatment cross-over design is the standard design employed in
a trial of bio-equivalence for drugs A and B. In this design, each subject receives drugs A
and B. Half the subjects, called Group 1, receive A first and then, after a suitably chosen
period of time that is called the wash-out period, receive B. The remaining subjects,
called Group 2, receive B first and then A after the wash-out period. We briefly review
the mathematical aspects of the design in this section. Readers unfamiliar with cross-
over designs are requested to refer to Fleiss (1986), or Kakuma and Hattori (2012).

Let X∗
ij and Y ∗

ij be the data from the j-th subject who belongs to Group i observed
at the first treatment period and at the second treatment period, respectively (i = 1, 2).
The sizes of Groups 1 and 2 are assumed to be equal; it is denoted by n. These notations
are summarized in Table 1.

Then, X∗
1j , X

∗
2j , Y

∗
1j and Y ∗

2j may be represented as follows:

X∗
1j = π1 + τA + ϵ1Aj , X∗

2j = π1 + τB + ϵ1Bj , (1)

Y ∗
1j = π2 + τB + ϵ2Bj , Y ∗

2j = π2 + τA + ϵ2Aj , (2)

where πℓ is the effect parameter at treatment period ℓ (ℓ = 1, 2); τA and τB are the
treatment effects of drugs A and B, respectively; and {ϵ1Aj}nj=1, {ϵ1Bj}nj=1, {ϵ2Aj}nj=1,
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Table 1: AB/BA design
Representation of the data from the j-th subject in Groups 1 and 2

Treatment Period
Treatment 1 2 Total

Group 1 (A then B) X∗
1j Y ∗

1j 2n
Group 2 (B then A) X∗

2j Y ∗
2j 2n

and {ϵ2Bj}nj=1 are the error terms. These error terms are assumed to be mutually
independent and identically distributed as a normal distribution with mean zero and
variance σ2

0 .
Remark 1. X∗

ij and Y ∗
ij often follow lognormal distributions. If this is the case

X∗
ij , τA, Y

∗
ij and τB in the above model are replaced, respectively by logX∗

ij , log τA,
log Y ∗

ij and log τB .
Putting

X̄∗
i =

1

n

n∑
j=1

X∗
ij , Ȳ ∗

i =
1

n

n∑
j=1

Y ∗
ij , (i = 1, 2),

WA =
1

2
(X̄∗

1 + Ȳ ∗
2 ), WB =

1

2
(X̄∗

2 + Ȳ ∗
1 ),

SD2
A =

1

2(n− 1)

n∑
j=1

(
(X∗

1j − X̄∗
1 )

2 + (Y ∗
2j − Ȳ ∗

2 )
2

)
,

SD2
B =

1

2(n− 1)

n∑
j=1

(
(X∗

2j − X̄∗
2 )

2 + (Y ∗
1j − Ȳ ∗

1 )
2

)
,

we have the following proposition, whose proof is straightforward and is omitted.
Proposition 1

(1) E(WA) = τA + (π1 + π2)/2, E(WB) = τB + (π1 + π2)/2,

(2) V (WA) = V (WB) = σ2
0 / (2n),

(3) E(SD2
A) = E(SD2

B) = σ2
0 .

Inspecting the proposition we put XA = WA/σ0, XB = WB/σ0, N = 2n, θ =(
τA + 2−1(π1 + π2)

)
/σ0, and δ = (τB − τA)/σ0, then XA and XB can be represented

as follows:
XA = θ + ϵA, XB = θ + δ + ϵB , (3)

where ϵA and ϵB are independent and identically distributed random variables that follow
a normal distribution with mean zero and variance N−1. Parameter δ, the standardized
difference of treatment effects, is our main focus, but θ is a nuisance parameter whose
interpretation is not easy.

Remark 2. Values of (WA, SDA) and (WB, SDB) are only available from the
package insert.
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2.2. Testing bio-equivalence

Various procedures are employed in testing the bio-equivalence of drugs, depending
on the type of drug (Center for Drug Evaluation and Research, 2003). We consider a
typical procedure that may be illustrated as follows. Effects of GE and B-N drugs are
compared in the two-period two-treatment cross-over design that uses healthy volunteers
as subjects. Blood samples are taken at series of time points subsequent to dosing and
assayed to determine drug concentration in the blood plasma. For each subject and
period, drug concentrations in the blood plasma are plotted against the corresponding
sampling times to give a concentration-time profile for that subject and period. The
area under the profile is called the area under the curve (AUC), the peak of the curve
is called the maximum concentration (Cmax) and the time to the Cmax is called the
maximum drug concentration time (Tmax). If we assume models given in (1) and (2)
for AUC, then τA and τB tend to be the mean AUC of drugs A and B, respectively.

Now, drugs A and B are considered bio-equivalent if 0.8 < τB/τA < 1.25 (Center
for Drug Evaluation and Research, 2003), which is equivalent to − log 1.25 < log τB −
log τA < log 1.25. AUC and Cmax often follow lognormal distributions, and the 90%
confidence interval of log τB − log τA is constructed based on log transformed data.
Drugs A and B are judged to be bio-equivalent if the confidence interval is included in
(− log 1.25, log 1.25) (Center for Drug Evaluation and Research, 2003).

3. Mathematical model

Suppose that there are K GE drugs developed for a B-N drug, which means that
there are K trials of bio-equivalence to the B-N drug. We consider H (≤ 3) charac-
teristics of a drug that consists of a subset of AUC, Cmax, and Tmax. As above, we
assume for the i-th trial that the sizes of Group 1 and 2 are equal (which we denote by
ni, and put Ni = 2ni), and that (WAhi, SDAhi) and (WBhi, SDBhi) are the values of the
h-th characteristics of drugs A and B and their standard deviations obtained from the
package inserts (i = 1, . . .K). Putting σ0hi = (SDAhi + SDBhi)/2, we assume similarly
as the meta-analysis (van Houwelingen et al., 2002) that σ0hi, i = 1, . . .K;h = 1, . . . H
are given constants. Since the scales of the drug characteristics are different, for exam-
ple, AUC is measured in ng.hr/ml, while Tmax is measured in hours, we standardize
these measurements by dividing each by its standard deviation: namely, we consider
XAhi = WAhi/σ0hi and XBhi = WBhi/σ0hi. Note that A corresponds to the B-N drug
and B to the i-th GE drug.

Now, we introduce a model that takes into account trial-to-trial variation. Let Vhi

be a specific variable to the i-th trial and δhi be the unknown parameter representing
the standardized difference of the h-th characteristic of the i-th GE and the B-N drugs,
and let ϵAhi and ϵBhi be measurement errors. Then, model (3) in the previous section
may be extended as follows:

XAhi = Vhi + ϵAhi, XBhi = Vhi + δhi + ϵBhi. (4)

We assume that ϵAhi, h = 1, 2, . . . , H, i = 1, 2, . . . ,K, ϵBhi, h = 1, 2, . . . , H, and
i = 1, 2, . . . ,K are independent and identically distributed random variables following a
distribution with mean zero and variance 1/Ni, and that vector V = (V1i, V2i, . . . , VHi)

T

has mean Θ = (θ1, θ2, · · · , θH)T andH×H covariance matrix Σ0 whose (h, h
′) element is

denoted by σhh′ if h ̸= h′ and by σ2
h if h = h′. The model is similar to the random effect
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models used for meta-analysis in clinical trials that target the estimation of Θ (Berkey
et al., 1995; Hardy and Thompson, 1996); however, our interest is in the estimation of
δhi.

4. Estimation

We do not assume specific distributions for V and ϵ′s, unable to apply the method
of maximum likelihood, and develop an iterative method for estimating unknown pa-
rameters based on the method of weighted least squares in the next sections.

4.1. Estimating Θ and {δhi} when Σ0 is known

We first assume that Σ0 is known. Putting Z0i = (XA1i, XA2i, . . . , XAHi)
T , Z1i =

(XB1i, XB2i, . . . , XBHi)
T , and Zi = (ZT

0i, Z
T
1i)

T , it follows from (4) that Zi has the
following mean vector and covariance matrix:

ΘMi =

(
Θ
Θ

)
+

(
0
∆i

)
,

ΣMi =

(
Σ0 Σ0

Σ0 Σ0

)
+

1

Ni
I, (5)

where Θ is the mean of V defined above, and ∆i = (δ1i, δ2i, . . . , δHi)
T and I is the

2H-dimensional unit matrix. We estimate Θ and ∆i, i = 1, 2, . . . ,K by minimizing the
sum of weighted squared deviations

QM =
K∑
i=1

(Zi −ΘMi)
TΣMi

−1(Zi −ΘMi)

with respect to θ1, θ2, . . . , θH and δ1i, δ2i, . . . , δHi, i = 1, 2, . . . ,K. The resulting weighted
least squared estimates are given explicitly in the following theorem.

THEOREM 1. Assume that Σ0 is a known non-singular H ×H matrix, and put(
A1i A2i

A2i A3i

)
= Σ−1

Mi.

(1) Then, A3i = A1i and the estimates of Θ and ∆i, i = 1, 2, . . . ,K that minimize QM

are given by

Θ̂ =

(
K∑
i=1

(A1i −A2iA
−1
1i A2i)

)−1 K∑
i=1

(A1i −A2iA
−1
1i A2i)Z0i,

∆̂i = A−1
1i A2i(Z0i − Θ̂) + (Z1i − Θ̂).

(2) Θ̂ and ∆̂i are unbiased estimates of Θ and ∆i

Proof. The proof of the theorem is given in Appendix.

4.2. Estimating Θ and {δhi} when Σ0 is unknown

We first show two theorems. The proofs of the theorems are given in Appendix.
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Putting for t = A,B

S2
th =

1

K − 1

K∑
i=1

(Xthi − X̄th)
2,

SAh,th′ =
1

K − 1

K∑
i=1

(XAhi − X̄Ah)(Xth′i − X̄th′),

we have the following theorem.
THEOREM 2.

(1) An unbiased estimator of σ2
h is given by

σ̂2
h =

1

2

(
S2
Ah − 1

K

K∑
i=1

1

Ni
+ SAh,Bh

)
.

(2) An unbiased estimator of σhh′ (h ̸= h′) is given by

σ̂hh′ =
1

3

(
SAh,Ah′ + SAh,Bh′ + SAh′,Bh

)
.

THEOREM 3. Put

δ̄h =
1

K

K∑
i=1

δhi, c2δh =
1

K − 1

K∑
i=1

(δhi − δ̄h)
2,

cδh,h′ =
1

K − 1

K∑
i=1

(δhi − δ̄h)(δh′i − δ̄h′).

Then, it follows that

E(S2
Bh) = σ2

h +K−1
K∑
i=1

N−1
i + c2δh, E(SBh,Bh′) = σhh′ + cδh,h′ .

When Σ0 is unknown, we may plug in unbiased, and also consisitent, estimators
given in Theorem 2 for Σ0. In order to improve it, we propose in this section the following
2-step estimator for estimating unknown parameters. The method is described as follows.

Step 1. Compute ΣMi in (5) by replacing σ2
h and σhh′ in Σ0 with their unbiased estimates

σ̂2
h and σ̂hh′ that are given in Theorem 2.

Step 2. Compute Θ̂ = (θ̂1, θ̂2, . . . θ̂H) and ∆̂i = (δ̂1i, δ̂2i, . . . , δ̂Hi), i = 1, 2, . . . ,K using
Theorem 1.

Step3. Compute c2δh and cδh,h′ that are defined in Theorem 3 by replacing δhi with δ̂hi,
and then compute

σ̃2
h =

1

3

(
S2
Ah + S2

Bh + SAh,Bh − 2

K

K∑
i=1

1

Ni
− c2δh

)
,
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σ̃hh′ =
1

4

(
SAh,Ah′ + SAh,Bh′ + SAh′,Bh + SBh,Bh′ − cδh,h′

)
,

which are consistent estimates of σ2
h and σhh′ from Theorems 2 and 3.

Step 4. Go to Step 1 using σ̃2
h and σ̃hh′ , and then to Step 2 and 3. Repeat this process

twice.

4.3. Precision of the 2-step estimator

We check the precision of the 2-step estimator by using the practical data give in
Table 5 and by assuming normal distributions. If we assume normal distribution for
V ′s and ϵ′s, then we may estimate Θ and δhi by the method of maximum likelihood
(mle). Table 2 gives the estimates of 1-step, 2-step estimators and mle obtained from
the data given in Table 5, where the 1-step estimator is the estimator directory obtained
from Step 1 and 2, without repetition. The fifth and sixth column of the table shows
the absolute value of the difference of the two estimates from the mle, showing that the
2-step estimator improves the precision of the 1-step estimator, actually,

∑21
i=1 |2-step−

mle|=0.567 and
∑21

i=1 |1-step−mle|=0.710; and that the 2-step estimator is fairly close
to the mle. Although this is only an example, it indicates that the 2-step estimators are
comparable to mle even if the normality holds true.

A reviewer of the present paper raized a question of why not using the estimator
that is converged in the iterative algorithm. We may, of course use it, but we find after
a few simulation that the precision of the 2-step estimator is enough for our method of
selecting better GE drugs.

4.4. Comparison with the crude estimator for estimating δhi

Models given in (4) show that Vhi is the factor for adjusting for the trial to trial
variability. If we subtract XAhi from XBhi we may eliminate the factor and get an
unbiased estimator for δhi that does not take into account the trial to trilal valiability.
We call it the crude estimator of δhi. The following theorem shows the superiority of
δ̂hi to the crude estimator. Since we consider it for any given h, we drop h from those
suffixes for simplicity. Note that

V ar(XBi −XAi) = V ar(ϵBi − ϵAi) = 2
1

Ni
.

THEOREM 4. For σ2
1, the variance of XAi (and also of XBi), put

ρi =
σ2
1

σ2
1 +N−1

i

.

and assume that σ2
1 is known. Then it follows that

V ar(XBi −XAi) = V ar(δ̂i) +
(1− ρi)

Ni
(1− ρi∑k

j=1 ρj
)

and that V ar(δ̂i) < V ar(XBi −XAi).
Proof. The proof of the theorem is given in Appendix.
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Table 2: Estimates of 1-step, 2-step estimators and mle from data in Table 2.

AUC absolute difference
Drugs 1-step 2-step mle∗ |1-step-mle| |2-step-mle|
A -0.014 -0.014 -0.013 0.001 0.001
B -0.119 -0.137 -0.184 0.064 0.046
C 0.156 0.154 0.158 0.002 0.004
D -0.038 -0.032 -0.008 0.030 0.025
E -0.226 -0.236 -0.266 0.041 0.030
F 0.071 0.071 0.063 0.008 0.008
G -0.117 -0.144 -0.238 0.121 0.094
H 0.136 0.138 0.137 0.001 0.001
I 0.060 0.063 0.070 0.010 0.007
J -0.064 -0.065 -0.073 0.009 0.008
K -0.180 -0.174 -0.149 0.031 0.026
L 0.127 0.135 0.177 0.050 0.041
M -0.021 -0.022 -0.031 0.010 0.009
N 0.011 0.024 0.073 0.062 0.048
O 0.055 0.056 0.059 0.004 0.003
P -0.180 -0.180 -0.164 0.017 0.016
Q 0.080 0.084 0.094 0.014 0.010
R 0.256 0.257 0.251 0.004 0.006
S 0.267 0.295 0.411 0.144 0.115
T -0.078 -0.091 -0.141 0.063 0.050
U -0.201 -0.205 -0.225 0.024 0.020

∗: mle is obtained under the assumption of normality.

5. Ranking GE drugs

5.1. Distance of a GE drug from the B-N drug

Define the distance between the h-th characteristic of the i-th GE and B-N drugs
by Thi = |δ̂hi| using the estimated δ̂hi in the preceding section. Arranging them in
an ascending order, we may rank the GE drugs by means of the h-th characteristic,
h = 1, 2, . . . , H. One might expect a GE drug with a smaller rank to be better. However,
this is not straightforward, since, as is shown in the next subsection, the nearest two

ranks could be easily reversed. Alternatively, we may use Ti =

(
δ̂21i+ δ̂22i+· · ·+ δ̂2Hi

)−1/2

for distance. However, we concentrate on the former distance in this paper to deal with
the error in ranking.

5.2. Error probability in ranking

Suppose that there are two GE drugs, say F and G. Suppose also that we judge
the rank of F to be smaller than the rank of G if δ̂G − δ̂F > a for some constant a > 0,
where δ̂F (δ̂G) is the estimate of δF (δG). Then, an error probability of the judgment is
expressed by

EP = P (δ̂G − δ̂F > a|δF ≥ δG).



Selecting better generic drugs 61

We have the following theorem whose proof is given in Appendix.

THEOREM 5. If we assume normal distributions for ϵ′s and V ′s in model (4) and
suppose N = NF = NG, then the error probability is represented by

EP = 1− Φ

(
a+ (δF − δG)√

2σ2
1(1− ρ)2 + 2(1/N)(1 + ρ)2

)
, (6)

where ρ = ρF (= ρG) is defined in Theorem 4, and Φ is the cumulative distribution
function of a standard normal distribution.

Table 3 gives the values of the error probability for selected values of a, δF −δG and
σ2
1 . The table shows that the error probability in the ranking of two proximate GE drugs

is substantial when values of δF − δG and a are small, but that it decreases as δF − δG
increases; for example, EP = 0.03 when δF − δG = 1.0, a = 0.2, and N1 = N2 = 20,
indicating that the error probability of reversing the order of two drugs that have distant
ranks is small.

Table 3: Probabilities of reversing ranks of two drugs when N1 = N2 = 20

σ2
1 = 0.1 σ2

1 = 5.0
δF − δG a = 0.1 a = 0.2 a = 0.1 a = 0.2

0.1 0.36 0.29 0.38 0.35
0.3 0.23 0.18 0.26 0.24
0.6 0.10 0.07 0.13 0.12
1.0 0.02 0.01 0.04 0.03

Computed by equation (6).

5.3. A simulation for checking the stability of ranks

A simulation is conducted to check the stability of ranks of the GE drugs when
K = 10, H = 1 and Ni = 30, 40, i = 1, 2, . . . ,K. One thousand sets of XAi, XBi,
i = 1, 2, . . . ,K were generated from model (4). More precisely, random digits that
follow a normal distribution with mean zero and variance 1/Ni were generated and used
for ϵAi’s and ϵBi’s, and random digits that follow normal and lognormal distributions
with common mean θ and common standard deviation σ = 0.5, 1, 3 were generated, and
used for V ’s in the model. We call the former the normal model, and the latter the
lognormal model. It follows from the condition of bio-equivalence that θ and δi must
satisfy inequality −0.25(θ−σ0π̄) < δi < 0.25(θ−σ0π̄), where π̄ = (π1+π2), σ0, π1, and
π2 are quantities defined in Section 2.1. Although π̄ is unknown, we take this inequality
into account and set θ = 5, sufficiently larger than δi, where three sets of δi’s (δi = 0.2i,
i = 1, 2, . . . ,K; δi = 0.15i, i = 1, 2, . . . ,K; δi = 0.1ℓ, i = 1, 2, . . . ,K) were considered.

We use r(F ; s) to denote the ranks of drug F in the s-th run, and consider the
ranks of F in the r-th and s-th runs to agree iff r(F ; s) = r(F ; t). We also define the rate
of agreement as the sum of agreements of all GE drugs over a thousand runs divided
by 1,000. Table 4 lists the rates of agreement under the normal and lognormal models
when Ni = 30, 40, i = 1, 2, . . . ,K. The table shows that the rates of agreement are
approximately larger than 90% if the distance between the GE and B-N drugs is larger
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than 0.20 when Ni ≥ 40, i = 1, 2, . . . , 10; that rates of the normal and lognormal models
are almost equal; and that the rate increases slightly as σ increases.

Table 4: Rates of agreement of the ranks under the normal and lognormal models

Ni = 30, i = 1, 2, . . . , 10

Normal model Lognormal model

δ σ=0.5 σ=1 σ=3 σ=0.5 σ=1 σ=3
0.20 0.87 0.98 1.00 0.86 0.97 1.00
0.15 0.77 0.93 0.97 0.78 0.93 0.98
0.10 0.61 0.78 0.87 0.61 0.78 0.86

Ni = 40, i = 1, 2, . . . , 10

Normal model Lognormal model

δ σ=0.5 σ=1 σ=3 σ=0.5 σ=1 σ=3
0.20 0.93 0.99 1.00 0.94 0.99 1.00
0.15 0.88 0.98 1.00 0.87 0.98 1.00
0.10 0.73 0.89 0.95 0.74 0.90 1.00

6. Method for selecting better GE drugs

Findings in the preceeding section indicate that the direct use of ranks of GE drugs
for selecting better one could run a risk, but the reverse probability of two GE drugs
are small when their ranks are stay aloof. In other words, the ranking is fairly stable
if the distance of two drugs is larger than 0.20. We introduce in this section a method
for selecting better GE drugs by taking into account these findings. The method is as
follows.

• Classify GE drugs into three groups as follows by using estimated AUC distances

from the B-N drug. (1) Take a0 =
(
the second largest { δ̂i, i = 1, . . . ,K} - smallest

{δ̂i, i = 1, . . . ,K}
)
/3. (2) Classify drugs into three groups as follows: the first

group consists of drugs with AUC distances less than or equal to a0, the second
group consists of drugs with AUC distances larger than a0 but less than or equal
to 2a0, and the third group consists of drugs with AUC distances larger than 2a0.
Denote these groups by g1auc, g2auc, and g3auc, respectively.

• In addition, classify GE drugs by using Cmax distances in the same way and denote
these groups as g1cmax, g2cmax, and g3cmax.

• Set G1 = g1auc ∩ g1cmax, G3 = g3auc ∩ g3cmax, and G2 = {other drugs}, and select
drugs in group G1 as better GE drugs in the list of candidates.

The behavior of the method will be assessed in the next section by simulation.
Note that the largest distance can be unusually large, and although we excluded it when
defining the cut-off point, a0, we include it in G3
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7. Application

7.1. data

Pravastatin is a lipid-lowering compound—a HMG-CoA reductase inhibitor, which
reduces cholesterol biosynthesis. It is used for preventing cardiovascular diseases. We
consider Pravastatin as the B-N drug. More than twenty generic drugs that are bio-
equivalent to Pravastatin are sold in the market. We consider twenty-one of them by
naming them randomly as A,B, . . . , T, U . Table 5 lists the values of AUC, Cmax, and
Tmax, their standard deviations, and the size of the two groups in each trial that we
collected from the package insert of each generic drug. We use AUC and Cmax as the
characteristics of the drugs and apply our method; thus, H = 2 and K = 21.

Note that the variability of AUC among trials is tremendous, spreading from 18.42
nghr/ml to 85.93 nghr/ml. This is because of the Guideline (Center for Drug Evalu
and Research 2003) onley states the key points of the sampling schedule of taking blood
samples. The number of time intervals and times for the sampling are left to generic
manifacturers. To check the validity of using such AUC in our model, we obtained the
time of the last sampling point from each trial from the package insert and studied its
correlation with the AUC. We find a significant relationship between the time of the
last sampling point and {WA1i}, but it disappeared when XA1i = WA1i/SDA1i is used
instead of WA1i. Thus the standardization is not only adjust for the scale of the drug
characteristics, but also provides us the validity of applying our model given in (4).

7.2. Application of the proposed method

Σ0 in Step 1 is computed by setting H = 2, giving σ2
1=0.21, σ2

2=0.17, σ12=0.16.
Next, using these values for Σ0 estimates of θ1, θ2, δ1i, and δ2i are obtained by the
method illustrated in Step 2. Then, Σ0 is refined by using the method given in Step
3. Finally, Step 4 is conducted by using the refined Σ0. The results are summarized in
Table 6. The first column of the table lists the id of the GE drugs, from the second to
the fourth columns list the AUC results, and from the fifth to the seventh columns list
the Cmax results. Note that the fourth and seventh columns list the grouping results
of drugs by AUC and Cmax; and the last column list the results of the grouping of
these drugs into three groups. The colums show that the agreement of groups made
by AUC and Cmax is not good, for example, Drug E is classified into the group 3 by
AUC, whereas it is classified into the group 1 by Cmax. The cut-off points of the first
and second groups and of the second and third groups for AUC are 0.081 and 0.162,
respectively, and for Cmax are 0.069 and 0.138, respectively. The estimates of the other
parameters are σ̂2

1 = 0.21, σ̂2
2 = 0.17, σ̂12 = 0.16, θ̂1 = 2.19, and θ̂2 = 1.91. It follows

from Table 6 that G1 = {A, J,M,O}, G2 = {B,C,D,E, F,G,H, I,K,L,N,Q, S, T, U},
and G3 = {P,R}. From this result we recommend GE drugs in group G1 as better GE
drugs among the candidates.

7.3. Checking the reliability

We conducted a simulation to check the reliability of the obtained results. The
framewok of the simulation is as follows. Assuming the estimated parameters as true
parameters we generated one thousand sets of XAhi, XBhi, i = 1, 2, . . . ,K (K = 21) and
h = 1, 2 from model (4) under the normal and lognormal models, applied the proposed
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Table 5: Values of AUC, Cmax, and Tmax, their standard deviations, and the size of the two groups in
the 21 trials of bio-equivalence to Pravastatin

AUC: nghr/ml (SD) Cmax: ng/ml (SD) Tmax: hr (SD) n

A 46.97 (23.20) 19.88 (11.27) 1.10 (0.30) 20
Pravastatin 47.24 (21.82) 19.98 (10.80) 1.10 (0.30) 20

B 27.43 (12.49) 12.41 ( 4.56) 1.10 (0.20) 14
Pravastatin 28.07 ( 8.53) 13.11 ( 4.43) 1.10 (0.20) 14

C 43.22 (14.94) 16.30 ( 6.09) 1.00 (0.18) 23
Pravastatin 40.93 (16.92) 15.95 ( 7.64) 1.10 (0.27) 23

D 36.39 (17.07) 14.01 ( 8.02) 1.20 (0.30) 19
Pravastatin 37.56 (14.63) 14.31 ( 6.91) 1.20 (0.50) 19

E 28.12 (13.18) 14.31 ( 6.31) 1.03 (0.26) 20
Pravastatin 30.61 (13.19) 15.21 ( 6.68) 0.98 (0.30) 20

F 44.10 (25.10) 18.70 (12.40) 1.20 (0.40) 28
Pravastatin 41.90 (24.60) 17.00 (11.50) 1.20 (0.30) 28

G 18.57 ( 9.87) 6.62 ( 2.69) 1.53 (0.32) 18
Pravastatin 18.42 ( 8.14) 6.62 ( 2.44) 1.53 (0.36) 18

H 38.49 (25.07) 17.99 (14.42) 1.04 (0.31) 60
Pravastatin 35.25 (20.49) 16.68 (12.84) 1.13 (0.40) 60

I 38.95 (19.99) 17.49 (10.99) 1.10 (0.40) 20
Pravastatin 37.74 (20.16) 17.74 (12.54) 1.10 (0.20) 20

J 37.94 (21.48) 17.31 (10.75) 1.03 (0.22) 30
Pravastatin 38.97 (18.27) 17.01 ( 8.88) 1.15 (0.27) 30

K 73.22 (30.63) 21.02 (11.62) 1.10 (0.20) 30
Pravastatin 80.35 (38.18) 21.40 (11.39) 1.20 (0.30) 30

L 85.93 (33.86) 37.98 (18.72) 1.17 (0.36) 23
Pravastatin 83.66 (30.31) 34.04 (14.59) 1.24 (0.30) 23

M 53.20 (29.15) 18.32 (11.80) 1.20 (0.30) 20
Pravastatin 53.20 (28.86) 18.81 (11.85) 1.20 (0.30) 20

N 47.40 (25.70) 19.80 (14.90) 1.07 (0.40) 20
Pravastatin 48.50 (19.30) 19.90 (12.30) 1.08 (0.23) 20

O 33.88 (17.24) 17.87 (11.35) 1.10 (0.30) 24
Pravastatin 33.00 (14.63) 17.86 ( 8.89) 1.10 (0.30) 24

P 55.73 (23.07) 19.81 ( 9.11) 1.20 (0.30) 19
Pravastatin 60.52 (21.79) 21.59 ( 9.08) 1.10 (0.20) 19

Q 47.70 (22.40) 20.16 (11.34) 1.20 (0.20) 26
Pravastatin 46.00 (23.68) 19.27 (12.54) 1.20 (0.30) 26

R 51.60 (32.85) 19.90 (14.00) 1.10 (0.54) 29
Pravastatin 44.30 (21.00) 15.70 ( 9.15) 1.30 (0.54) 29

S 35.10 ( 9.80) 11.70 ( 4.40) 1.20 (0.20) 10
Pravastatin 35.60 ( 8.90) 12.00 ( 4.40) 1.30 (0.40) 10

T 49.80 (26.70) 23.10 (11.60) 1.40 (0.40) 20
Pravastatin 49.90 (27.80) 22.50 (11.50) 1.40 (0.40) 20

U 47.98 (24.61) 18.24 ( 9.84) 1.20 (0.30) 20
Pravastatin 52.58 (30.28) 19.07 (11.57) 1.30 (0.40) 20
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Table 6: Estimated |δi| in AUC and Cmax of Pravastatin

AUC Cmax

Drugs |δ̂i| rank gauc |δ̂i| rank gcmax Group

A 0.014 1 1 0.020 2 1 1
M 0.022 2 1 0.065 7 1 1
N 0.026 3 1 0.124 15 2 2
D 0.032 4 1 0.073 10 2 2
O 0.056 5 1 0.015 1 1 1
I 0.064 6 1 0.075 11 2 2
J 0.065 7 1 0.026 3 1 1
F 0.071 8 1 0.111 14 2 2
Q 0.084 9 2 0.036 4 1 2
T 0.092 10 2 0.127 16 2 2
L 0.136 11 2 0.198 19 3 2
H 0.138 12 2 0.068 9 1 2
B 0.139 13 2 0.078 12 2 2
G 0.147 14 2 0.222 20 3 2
C 0.154 15 2 0.089 13 2 2
K 0.174 16 3 0.065 8 1 2
P 0.179 17 3 0.161 18 3 3
U 0.206 18 3 0.063 6 1 2
E 0.237 19 3 0.045 5 1 2
R 0.257 20 3 0.324 21 3 3
S 0.298 21 3 0.132 17 2 2

method to each set and classified the GE drugs into the three groups. Table 7 summarizes
the results of the simulation . The first column of the table lists the true groups; namely
the obtained results given above. The second, third, and fourth columns list the average
proportions of drugs selected for groups G1, G2, and G3 by the proposed method under
the normal model; and the fifth, sixth, and seventh columns list the corresponding
proportions under the lognormal model. The table shows that proportions of the normal
and lognormal models are almost equal; and that the proportion of the drugs in G1 to
be classified as G3 drugs is 0.03, showing a stability of the obtained results.

Table 7: Proportions of drugs in the true group selected as G1, G2, and G3

Selected

Normal model Lognormal model

True group G1 G2 G3 G1 G2 G3

G1 0.25 0.71 0.04 0.26 0.71 0.03
G2 0.20 0.72 0.08 0.19 0.73 0.08
G3 0.09 0.72 0.19 0.10 0.70 0.20
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8. Discussion

It is widely misconceived that GE drugs are perfect copies of the B-N drug. How-
ever, from a statistical point of view, these drugs have only passed statistical tests of
bio-equivalence conducted by using measurements of AUC and Cmax in the blood of
healthy volunteers. Typically, GE drugs may differ in excipients with which the active
principle is associated in the final drug product. The difference may influence dissolu-
tion rates in the gastrointestinal tract, and thus, absorption of the drug substance; more
rapid absorption rates may be associated with a higher incidence of side effects (Olling
et. al., 1999; Kramer et.al., 2007).

Apart from the isue on the excipients, the present study makes it clear that there
are about 30 time difference between the smallest and the largest estimated distances
regarding the AUC of Probastatin. Since those GE drugs have passed the test of bio-
equivalence, it is not easy to differentiate two drugs that have proximate ranks; actually,
their confidence intervals heavily overlap. However, we find that there could be a sub-
stantial difference between the smallest and largest distances. The method proposend
in this paper aimes to take advantage of this finding; it prevents the risk of G1 drugs to
be judged as G3 drugs.

Appendix

Proof of Theorem 1
Let A be a p × p matrix, and b, x, and c be p-dimensional column vectors; then,

we first note that it follows that

∂

∂x
(b− x)TA(b− x) = −2A(b− x),

∂

∂x
(b− x)TA(c− x) = −A(b− x)−A(c− x),

∂

∂x
(b− x)T c =

∂

∂x
cT (b− x) = −c.

Now applying these operations, we have
∂QM

∂Θ = 0 ⇐⇒
K∑
i=1

(
A1i(Z0i −Θ) +A2i(Z0i −Θ) +A2i(Z1i −Θ)

+A1i(Z1i −Θ)− (A2i +A1i)∆i

)
= 0, (7)

∂QM

∂∆i
= 0 ⇐⇒

A1i∆i −A2i(Z0i −Θ)−A1i(Z1i −Θ) = 0. (8)

Since Σ0 is assumed non-singular A1i is non-singular and it follows from (8)

∆i = A−1
1i A2i(Z0i −Θ) + (Z1i −Θ). (9)

Substituting (9) into (7), we have

K∑
i=1

(A1i −A2iA
−1
1i A2i)Z0i =

K∑
i=1

(A1i −A2iA
−1
1i A2i)Θ,



Selecting better generic drugs 67

if A1i is non-singular. Thus,

Θ̂ =

( K∑
i=1

(A1i −A2iA
−1
1i A2i

)−1 K∑
i=1

(A1i −A2iA
−1
1i A2i)Z0i,

∆̂i = A−1
3 A2(Z0i − Θ̂) + (Z1i − Θ̂).

Proof of Theorem 2 and 3
Since

S2
Ah =

1

K − 1
(

K∑
i=1

X2
Ahi −KX̄2

Ah),

E(
K∑
i=1

X2
Ahi) =

K∑
i=1

(
V ar(XAhi) + (E(XAhi))

2

)
= K(σ2

h + θ2h) +
K∑
i=1

N−1
i ,

E(X̄2
Ah) = V ar(X̄Ah) + (E(X̄Ah))

2 =
1

K2

K∑
i=1

(σ2
h +N−1

i ) + θ2h,

we have

E(S2
Ah) = σ2

h +
1

K

K∑
i=1

N−1
i .

Similarly as above, we can show that

E(SAh,Bh) = σ2
h, E(SAh,Ah′) = E(SAh,Bh′) = σhh′ .

We get Theorem 2 from these equations.
Now, similarly as above we may show

E(S2
Bh) = σ2

h +
1

K

K∑
i=1

N−1
i +

1

K − 1

K∑
i=1

(δhi − δ̄h)
2,

E(SBh,Bh′) = σhh′ +
1

K − 1

K∑
i=1

(δhi − δ̄h)(δh′i − δ̄h′).

Thus the proof of Theorem 3 is immediate by these equations.

Proof of Theorem 4
Since QM may be represented as

QM =
1

σ2
1

K∑
k=1

ρk
1− ρ2k

(
(XAk − θ)2 − 2ρk(XAk − θ)(XBk − θ − δk)

+(XBk − θ − δk)
2

)
,

we have

θ̂ =

∑K
k=1 ρkXAk∑K

k=1 ρk
,
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δ̂k = XBk − θ̂ − ρk(XAk − θ̂), (10)

where

ρk =
σ2
1

σ2
1 +N−1

k

. (11)

The variance of δ̂k is represented as

V (δ̂k) = V (XBk) + ρ2kV (XAk) + (1− ρk)
2V (θ̂)− 2ρkcov(XBk, XAk)

−2(1− ρk)cov(XBk, θ̂) + 2ρk(1− ρk)cov(XAk, θ̂). (12)

Now we may show

V (XBk) = V (XAk) = σ2
1 +N−1

k , cov(XBk, XAk) = σ2
1 ,

cov(XBk, θ̂) =
ρk∑K
k=1 ρk

σ2
1 and cov(XAk, θ̂) =

1∑K
k=1 ρk

σ2
1 ,

and since σ2
1 + k−1

k = σ2
1/ρk from (11), we have

V (θ̂) =
1

(
∑K

k=1 ρk)
2

K∑
k=1

ρ2k(σ
2
1 +N−1

k ) =
σ2
1∑K

k=1 ρk
.

Thus substituting these equations to (12), it follows that

V (δ̂k) = (1 + ρ2k)(σ
2
1 +N−1

k ) + (1− ρk)
2 σ2

1∑K
k=1 ρk

− 2ρkσ
2
1 .

Thus

V (XBk −XAk)− V (δ̂k) =
1− ρ2k
Nk

− σ2
1(1− ρk)

2(1 +
1

ρi
).

Again we have σ2
1(1−ρk) = ρk/Nk from (11), thus substituting it to the above equation

we finally have

V (XBk −XAk)− V (δ̂k) = (1− ρk)
1

Nk
(1− ρk∑K

i=1 ρi
).

This completes the proof of Theorem 4.

Proof of Theorem 5
It follows from (10) that

δ̂G − δ̂F = (XBG − ρGXAG)− (XBF − ρFXAF ) + (ρG − ρF )θ̂.

Thus

V (δ̂G − δ̂F ) = V (XBG − ρGXAG) + V (XBF − ρFXAF ) + (ρG − ρF )
2V (θ̂)

−2cov(XBG − ρGXAG, XBF − ρFXAF ) + 2(ρG − ρF )cov(XBG − ρGXAG, θ̂)

−2(ρG − ρF )cov(XBF − ρFXAF , θ̂)
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= V (XBG − ρGXAG) + V (XBF − ρFXAF ) + (ρG − ρF )
2V (θ̂),

since

cov(XBG − ρGXAG, XBF − ρFXAF ) = cov(XBG − ρGXAG, θ̂)

= cov(XBF − ρFXAF , θ̂) = 0

Furthermore, we may show

V (XBi − ρiXAi) = σ2
1(1− ρi)

2 +N−1
i (1 + ρ2i )

for i = G,F , and it folows that

V (δ̂G − δ̂F ) = σ2
1(1− ρG)

2 +N−1
G (1 + ρ2G) + σ2

1(1− ρF )
2

+N−1
F (1 + ρ2F ) + (ρG − ρF )

2 σ2
1∑K

k=1 ρk
.

In particular, when NG = NF = N we have ρG = ρF = ρ and

V (δ̂G − δ̂F ) = 2σ2
1(1− ρ)2 + 2N−1(1 + ρ)2.

Since the normality is assumed for V ’s and ϵA’s and ϵB ’s, rest of the proof of the theorem
is straightforward.
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