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Abstract 

 

Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, plays a role in 

endothelial dysfunction, an initial step of atherosclerosis. Advanced glycation end products (AGEs) also 

contribute to accelerated atherosclerosis. However, a pathophysiological crosstalk between ADMA and 

AGEs remains unclear. In this study, we investigated the relationship between ADMA and AGE level in 

patients with end-stage renal disease (ESRD) due to diabetic nephropathy. We also examined whether 

and how AGEs increased ADMA generation by cultured endothelial cells (ECs). Plasma ADMA levels 

were positively associated with serum AGE level and were inversely correlated with endothelial 

function determined by flow-mediated vasodilatation. AGEs dose dependently increased reactive 

oxygen species (ROS) generation in ECs, which was blocked by antisense DNA raised against receptor 

for AGEs (RAGE). Furthermore, AGEs decreased messenger RNA (mRNA) level of dimethylarginine 

dimethylaminohydrolase (DDAH)-II, an enzyme for ADMA degradation, reduced its total enzymatic 

activity and resultantly increased ADMA, all of which were completely blocked by an antioxidant, 

N-acetylcysteine. These results suggest that the AGE-RAGE-mediated ROS generation could be 

involved in endothelial dysfunction in diabetic ESRD patients partly by increasing the ADMA 

generation via suppression of DDAH activity in ECs. 

 

 

Introduction 

 

Reducing sugars such as glucose can react non-enzymatically with amino groups of proteins to form 

Amadori products.1 Over the course of days to weeks, these Amadori products undergo further 

rearrangement reactions to form irreversibly cross-linked senescent macroprotein derivatives called 

advanced glycation end products (AGEs).1–3 The formation and accumulation of AGEs have been known 

to progress at an accelerated rate under diabetes, especially in patients with end-stage renal disease 

(ESRD).3 Furthermore, there is accumulating evidence that AGEs elicit oxidative stress generation in 

various cell types through the interaction with a receptor for AGEs (RAGE) and subsequently evoke 



inflammatory and thrombogenic reactions, thereby contributing to accelerated atherosclerosis in 

diabetes.4–6 Therefore, AGEs may be one of the causative factors that could explain the increased risk of 

cardiovascular disease (CVD) in diabetic patients with ESRD. 

Nitric oxide (NO) is a pleiotropic molecule critical to a number of physiological and pathological 

processes in humans.7 Since NO not only inhibits the inflammatory-proliferative reactions in vascular 

wall cells but also exerts anti-thrombogenic and endothelial cell (EC) protective properties in vivo,7,8 

impaired production and/or bioavailability of NO are also considered to play a role in atherosclerosis in 

humans.7–9 Indeed, circulating level of asymmetric dimethylarginine (ADMA), an endogenous NO 

synthase inhibitor, is increased in diabetic patients, especially with ESRD,10 and is associated with 

future cardiovascular events in these subjects.10 However, a pathophysiological crosstalk between 

ADMA and AGEs remains to be elucidated. In this study, we investigated the relationship between 

ADMA and AGE levels in 15 patients with ESRD due to diabetic nephropathy. We also examined here 

whether and how AGEs increased ADMA generation by human cultured aortic ECs. 

 

 

Design and methods 

 

Materials 

Bovine serum albumin (BSA; essentially fatty acid free and essentially globulin free, lyophilized 

powder) and N-acetylcysteine (NAC) were purchased from Sigma (St. Louis, MO, USA), 

d-glyceraldehyde from Nakalai Tesque (Kyoto, Japan) and GeneAmp RNA PCR Core Kit from Applied 

Biosystems (Branchburg, NJ, USA). 

 

Subjects 

 

Fifteen type 2 diabetic patients with ESRD due to nephropathy (13 males and 2 females; mean age = 61 

years; 24-h creatinine clearance = 5.0 ± 1.0 mL/min, range = 2.3–9.8 mL/min) who did not undergo 

haemodialysis therapy were enrolled in the present study. All patients received insulin injection for the 

treatment of blood glucose. All patients received anti-hypertensive drugs such as angiotensin-II type 1 

receptor blockers (n = 12), angiotensin-converting enzyme inhibitors (n = 2) and calcium channel 

blockers (n = 14). Four patients were treated with statins. The protocol was approved by the ethical 

committee of our institution and informed consent was obtained from all patients. 

 

Measurements of endothelial function 

 

Endothelial function was determined by flow-mediated vasodilatation (FMD) of brachial artery as 

described previously.11 Two blinded investigators evaluated the FMD data. The mean value of two 

measurements was calculated. 

 

Measurement of ADMA and AGEs 



 

ADMA level was measured with a high-performance liquid chromatography as described previously.12 

Serum level of carboxymethyllysine, one of the representative circulating AGEs, was determined by an 

enzyme-linked immunosorbent assay at a commercially available laboratory (SRL, Inc., Tokyo, Japan). 

 

Preparations of AGEs 

 

AGE-BSA was prepared as described previously.13 In brief, BSA was incubated under sterile conditions 

with d-glyceraldehyde for 7 days. Then, unbounded sugars were removed by dialysis against 

phosphate-buffered saline. Control non-glycated BSA was incubated in the same conditions except for 

the absence of reducing sugars. Preparations were tested for endotoxin using Endospecy ES-20S 

system (Seikagaku Co., Tokyo, Japan); no endotoxin was detectable. 

Cells 

 

Human immortalized aortic ECs with SV40T antigen14 were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM; Nissui Pharmaceutical Co., Tokyo, Japan) containing 10% fetal bovine serum (FBS; 

Filtron Pty Ltd, Brooklyn, Australia), 100 U/mL penicillin (Life Technologies, Grand Island, NY, USA) 

and 100 μg/mL of streptomycin (Life Technologies) at 37°C in a humidified 5% CO2–95% air 

atmosphere. AGE treatments were carried out in a medium containing 0.5% FBS. 

Intracellular reactive oxygen species generation 

 

Intracellular reactive oxygen species (ROS) generation was measured by using a fluorescent probe 

CM-H2DCFDA (Molecular Probes, Inc., Eugene, OR, USA) as described previously.13 

Assay with antisense oligodeoxyribonucleotides 

 

A phosphorothioate antisense complement of human RAGE messenger RNA (mRNA) and the 

corresponding sense oligodeoxyribonucleotide were synthesized and purified as described previously.13 

Sequences of antisense and sense oligonucleotides were 5′-CAACTGCTGTTCCGGCT-3′ and 

5′-AGCCGGAACAGCAGTTG-3′, respectively, which corresponded to nucleotides 6–22 of human 

complementary DNA (cDNA).15 An amount of 10 μM oligonucleotides was added to the medium, with 

100 μg/mL AGE-BSA or non-glycated control BSA, in which ECs were grown. After 24 h, intracellular 

ROS generation was measured. We confirmed that 10 μM antisense but not sense oligomers raised 

against RAGE mRNA reduced the RAGE protein level to 1/10 of that of control cells (data not shown). 

Semi-quantative reverse transcription–polymerase chain reactions 

 

Poly(A)+RNAs were isolated from ECs and were analysed by reverse transcription–polymerase chain 



reactions (RT-PCR) as described previously.16 The amounts of poly(A)+RNA templates (30 ng) and cycle 

numbers (30 cycles for dimethylarginine dimethylaminohydrolase (DDAH)-I gene; 26 cycles for 

DDAH-II gene; 22 cycles for β-actin gene) for amplification were chosen in quantitative ranges, where 

reactions proceeded linearly, which had been determined by plotting signal intensities as functions of 

the template amounts and cycle numbers. Primer sequences used in semi-quantitative RT-PCR were 

5′-CGTGGCCGTGGTGTGCGAGGA-3′ and 5′-CAGTTCAGACATGCTCACGGGG-3′ for human DDAH-I 

mRNAs and 5′-TTTCTTCGTCCTGGGTTGCCTG-3′ and 5′-ATCCTTTTCCCTACACTCTCCCCTC-3′ for 

human DDAH-II mRNAs. 

DDAH enzymatic activity 

 

Total DDAH enzymatic activity was measured as described previously.12 In brief, the cell lysate was 

incubated with 4 μM ADMA and 0.1 mM sodium phosphate buffer (pH = 6.5) in a total volume of 0.5 

mL for 6 h at 37°C. The reaction was stopped by the addition of equal volume of 10% trichloroacetic acid, 

and the supernatant was boiled with diacetyl monoxime [0.8% (wt/vol) in 5% acetic acid] and 

anti-pyrine [0.5% (wt/vol) in 50% sulphuric acid). The amounts of l-citrulline formed were determined 

with a spectrophotometric analysis at 466 nm. 

Statistical analysis 

 

All data were expressed as mean ± standard error (SE). Linear regression analysis was performed to 

evaluate the correlations among circulating levels of ADMA and AGEs and FMD. Experimental groups 

were compared by analysis of variance (ANOVA) and, when appropriate, with Scheffe’s test for 

multiple comparisons. A value of p < 0.05 was considered significant. 

 

 

Results 

 

Characteristics of the patients 

 

Characteristics of the patients are shown in Table 1. Mean circulating level of AGEs of our patients was 

6.7 U/mL. Systolic blood pressure of 129 ± 5.6 mmHg and diastolic blood pressure of 74 ± 2.4 mmHg 

were well controlled. Fasting plasma glucose was 107 ± 5.1 mg/dL, and HbA1c was 6.4% ± 0.2%. 

 

AGEs, ADMA and endothelial function in patients with diabetic nephropathy 

 

As shown in Figure 1(a), plasma level of ADMA was positively associated with circulating AGE level in 

patients with ESRD due to diabetic nephropathy (r = 0.52, p < 0.05). Furthermore, ADMA level was 

inversely correlated with FMD in our subjects (r = −0.54, p < 0.05; Figure 1(b)), whereas other 

cardiometabolic risk factors, including age, blood pressure, lipid parameters, fasting plasma glucose, 



HbA1c, renal function and body mass index, were not associated with FMD. In addition, plasma level of 

ADMA was not significantly correlated with endothelial function evaluated by FMD (r = −0.33, p = 

0.23). 

Effects of AGEs on DDAH-ADMA system in cultured human aortic ECs 

 

To clarify the mechanistic link between AGEs and ADMA, we examined whether and how AGEs 

increased ADMA production by ECs. As shown in Figure 2, AGEs dose dependently increased ROS 

generation in cultured human aortic ECs, which was blocked by antisense but not sense DNA raised 

against RAGE mRNA. Furthermore, AGEs decreased mRNA level of DDAH-II, a rate-limiting enzyme 

for ADMA degradation, but not DDAH-I in ECs (Figure 3). In addition, AGEs reduced its total 

enzymatic activity and resultantly increased ADMA generation by ECs, all of which were completely 

blocked by an antioxidant, NAC (Figure 4(a) to (c)). 

Discussion 

In the present study, we found that plasma ADMA level was associated with circulating AGE level and 

was inversely correlated with endothelial function in type 2 diabetic patients with ESRD due to 

nephropathy. The findings have extended the previous observations showing that serum AGE level was 

positively associated with ADMA level in non-diabetic patients with early stage chronic kidney disease 

(CKD)17 and that AGE level was correlated with endothelial dysfunction in diabetes.18,19 Moreover, we 

also found here for the first time that (1) AGEs reduced DDAH-II mRNA level and resultantly 

suppressed DDAH enzymatic activity and ADMA generation in cultured aortic ECs, all of which were 

blocked by the treatment of an antioxidant NAC, and (2) AGE-induced ROS generation was reduced by 

antisense DNAs raised against RAGE mRNA. Therefore, although we did not find here the direct 

correlation between serum AGE level and endothelial function probably due to small sample size, given 

that AGEs have exerted pleiotropic actions on a variety of cells via ROS generation,4,20 our present 

observations suggest that the AGE-RAGE-mediated ROS generation could be involved in endothelial 

dysfunction in diabetic patients with ESRD partly by increasing the ADMA generation via suppression 

of DDAH-II expression in ECs.  

DDAH-II is a dominant isoform of DDAH in ECs, which could mainly degrade ADMA.21 DDAH 

enzymatic activity in ECs has been shown to be suppressed under oxidative stress conditions.22 

Furthermore, overexpression of DDAH-II gene is reported to inhibit the elevation of ADMA level and, 

subsequently, to improve endothelial dysfunction in diabetic rats.23 Since there is accumulating 

evidence that increased plasma level of ADMA is associated with endothelial dysfunction, carotid 

intima media thickness and CVD in high-risk subjects such as patients with diabetes and CKD,24–26 the 

present findings suggest that oxidative stress generation-mediated DDAH-II suppression, which is 

evoked by the AGE-RAGE system, could contribute to ADMA accumulation and accelerated 

atherosclerosis in diabetic patients with ESRD. Small interference RNAs raised against DDAH-II 

significantly inhibited endothelium-dependent vasodilation of rat mesenteric arterioles, whereas small 

interfering RNA (siRNA) against DDAH-I had lesser effects,27 thus supporting our speculation. 

However, vascular endothelial-specific DDAH-I-deficient mice have also been shown to exhibit an 

increase in ADMA concentration associated with attenuated endothelial function.28 Therefore, although 



AGEs did not affect DDAH-I mRNA level in the present study (Figure 3), we cannot totally exclude the 

possibility that AGEs could affect DDAH-I enzymatic activity in ECs because there is no reliable 

method to measure the activity of DDAH-I and DDAH-II separately. 

Although we did not have the data of circulating levels of AGEs in diabetic patients with almost 

normal kidney function, several articles have already shown that circulating level of AGEs is 

significantly increased as the renal function deteriorated in patients with diabetes.29,30 These observa-

tions suggest that the crosstalk between the AGE-RAGE axis and ADMA-DDAH system observed in 

cell culture system could apply to ‘diabetic patients with ESRD’. 

In conclusion, the present results suggest that the AGE-RAGE-mediated ROS generation could be 

involved in endothelial dysfunction in diabetic patients with ESRD by increasing the ADMA generation 

via suppression of DDAH-II expression and its activity in ECs. AGE-ADMA-DDAH axis may be a 

therapeutic target for preventing accelerated atherosclerosis in these patients. 
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Table 1. Clinical characteristics of the subjects. 

 

Age (years) 61.3 ± 3.4 

Sex (number, male/female) 12/3 

Body mass index (kg/m2) 24.6 ± 1.2 

Advanced glycation end products (U/mL) 6.7 ± 0.5 

Systolic blood pressure (mmHg) 129.7 ± 5.6 

Diastolic blood pressure (mmHg) 74.0 ± 2.4 

Total cholesterol (mg/dL) 168 ± 11.2 

HDL cholesterol (mg/dL) 38.3 ± 4.2 

Triglycerides (mg/dL) 158 ± 21.9 

Fasting glucose (mg/dL) 107.1 ± 5.1 

HbA1c (%) 6.4 ± 0.2 

Serum creatinine (mg/dL) 9.0 ± 0.5 

24-h creatinine clearance (mL/min) 5.0 ± 1.0 

 

 

 

 

Figure 1. Correlations between plasma level of ADMA and (a) circulating AGE and (b) FMD.  

ADMA: asymmetric dimethylarginine; AGE: advanced glycation end product; FMD: flow-mediated 

vasodilatation. 

 

 
 



Figure 2. Effects of AGEs on ROS generation. ECs were pre-incubated with or without 10 μM 

antisense or sense oligodeoxyribonucleotides raised against RAGE mRNA. After 12 h, the cells were 

treated with 10–100 μg/mL of AGEs or 100 μg/mL of non-glycated BSA for 24 h. Then, ROS 

generation was measured (N = 14 per group). 

AGE: advanced glycation end product; ROS: reactive oxygen species; EC: endothelial cell; RAGE: 

receptor for AGEs; mRNA: messenger RNA; BSA: bovine serum albumin. 

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3. Effects of AGEs on DDAH-I and DDAH-II mRNA levels. ECs were incubated on 6 well 

plates and then stimulated with 100 μg/mL of AGEs for the indicated periods. Then, DDAH-I and 

DDAH-II mRNA expressions were determined by RT-PCR. Upper panels show the representative 

bands of RT-PCR. Lower panels show the quantitative data. Data were normalized by the intensity 

of β-actin mRNA-derived signals and related to the value obtained with the control (N = 6 per group). 

AGE: advanced glycation end product; DDAH: dimethylarginine dimethylaminohydrolase; mRNA: 

messenger RNA; EC: endothelial cell; RT-PCR: reverse transcription–polymerase chain reactions. *p 

< 0.05. 

 

 

 

 

 

 



Figure 4. Effects of AGEs and antioxidant on (a) DDAH-II mRNA level, (b) DDAH enzymatic activity 

and (c) ADMA generation in ECs. (a) ECs were pre-incubated with or without 1 mM NAC. After 1 h, 

the cells were treated with 100 μg/mL of AGEs or non-glycated BSA for 12 h. Then, DDAH-II mRNA 

level was analysed by RT-PCR. Upper panels show the representative bands of RT-PCR. Lower 

panels show the quantitative data. Data were normalized by the intensity of β-actin mRNA-derived 

signals and were related to the value obtained with the control. N = 6 per group. (b and c) ECs were 

pre-incubated with or without 1 mM NAC. After 1 h, the cells were treated with 100 μg/mL of AGEs 

or non-glycated BSA for 48 h. Then, (b) DDAH enzymatic activity and (c) ADMA generation were 

measured: (b) N = 12 per group and (c) N = 12 per group. 

AGE: advanced glycation end product; DDAH: dimethylarginine dimethylaminohydrolase; mRNA: 

messenger RNA; ADMA: asymmetric dimethylarginine; EC: endothelial cell; NAC: N-acetylcysteine; 

BSA: bovine serum albumin; RT-PCR: reverse transcription–polymerase chain reactions. 
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