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Abstract 

Suppose we are interested in estimating the average causal effect (ACE) for the population mean from 

observational study. Because of simplicity and ease of interpretation, stratification by a propensity score 

(PS) is widely used to adjust for influence of confounding factors in estimation of the ACE. 

Appropriateness of the estimation by the PS stratification relies on correct specification of the PS. We 

propose an estimator based on stratification with multiple PS models by clustering techniques instead of 

model selection. If one of them correctly specifies, the proposed estimator removes bias and thus is more 

robust than the standard PS stratification. 

 

Key words 

Propensity score; Stratification; Clustering; Multiple robustness; Confounding; Model misspecification; 

 

1 Introduction 

In order to draw inferences about the treatment effect from observational studies, it is a crucial issue how 

to control the effects of confounding factors. Rubin’s causal model is a widely accepted framework for 

causal inference from observational studies (Rosenbaum et al., 1983). We follow this framework. Under 

the strongly ignorable treatment assignment (SITA) assumption, various methods have been proposed to 

estimate the average causal effect. Outcome regression describing the relationship between the outcome 

and covariates is one of the standard methods to control confounding. Alternatively, one can use the 

methods based on the propensity score (PS) proposed by Rosenbaum and Rubin (1983), including 

stratification, matching and regression. The inverse probability weighted estimator (IPW) has an 

advantage in that it does not suffer from residual confounding, whereas the stratified analysis does 

(Rosenbaum, 1987). Recent theoretical advances have been made through the inverse weighting: the PS is 

incorporated into the doubly robust estimator, which has desirable properties of robustness and 

efficiencies (Lunceford et al., 2004; Bang and Robins, 2005). Namely, if at least one of the propensity 

score model or the outcome regression is correctly specified, it is consistent and when both of the 

propensity score model and the outcome regression are correctly specified, the doubly robust estimator is 

more efficient than the IPW estimator. 

On the other hand, the PS stratification is also widely applied in practice (Barker et al., 1988; Coyte et al., 

2000; Bateman et al., 2013). One advantage of the stratified analysis is ease of interpreting the results of 

statistical analysis, in particular, for non-statisticians. The idea behind the PS stratification is very simple. 

First, subjects are classified by a PS into several strata, within which no factors are confounding due to a 

balancing property of the PS, next, the stratum-specific treatment effects are estimated using the 
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difference of simple sample means between two groups, and finally all the stratum-specific estimators are 

combined across strata. In theory, the number of strata must be large enough to ensure that the values of 

the propensity score are close within a stratum. However, a relatively small number of strata e.g., 5 is 

often employed since most biases can be removed when relatively few strata are involved.  

In practice, the PS is unknown and thus must be estimated. Estimation of ACE by misspecified PS may 

have a serious bias (Drake, 1993; Kang et al., 2007). As argued by Kang and Schafer (2007), both the 

IPW and the doubly robust estimator may provide seriously biased or unstable estimates with highly 

variable PSs. The stratified estimator by a PS is likely to be stable even with highly variable PS, and is 

robust against misspecification of the link function in modeling the PS by the generalized linear model 

(Williamson, 2012; Drake, 1993).   

In this paper, we focus on estimators based on stratification. To reduce uncertainty in modeling of the PS, 

some model selection procedures are often employed. Instead, we propose conducting stratification 

accounting for multiple PS models simultaneously. In principle, one can easily construct such strata. For 

example, if we have three PS models and stratify subjects into 5 strata with respect to each PS, then 

53=125 strata are created. However, some of them may be empty or have only a small number of subjects 

and estimator with the stratification may be unstable. We propose to apply clustering techniques in order 

to classify subjects efficiently into relatively small number of strata, within which each of the PSs is 

homogeneous.  

The rest of this manuscript is organized as follows. In Section 2, we introduce our proposed method. In 

Section 3, we examine the performance of our proposed method, comparing it with several alternatives; 

the stratified estimator by a propensity score, that by the propensity score selected by BIC, that by the 

model-averaged propensity score, that by a clustering method applied to a vector of covariates directly. 

Furthermore, comparison with the inverse probability treatment weighting estimator and the doubly 

robust estimator were also performed. In Section4, our proposal is illustrated with a dataset from the Tone 

study, which is a community survey conducted in Japan. 

 

2 Methods 

2.1 Preliminaries 

Suppose we are interested in estimating the average causal effect (ACE) by comparing treatment and 

control groups in an observational study. Let Z be an indicator of treatment allocation (Z = 1 for the 

treatment group and Z = 0 for the control group) and X denote a p-dimensional covariate vector. Each 

subject has a pair of potential outcomes ൫ܻሺଵሻ, ܻሺ଴ሻ൯, where, ܻሺ௥ሻ, r = 0, 1 is the outcome of the subject 

that would be observed if he or she were assigned to Z = r (r = 0, 1). Suppose we have observations from 

n subjects. Let ൫ ௜ܻ
ሺଵሻ, ௜ܻ

ሺ଴ሻ, ܼ௜, ௜ܺ൯, i = 1, 2, ..., n be n i.i.d copies of ൫ܻሺଵሻ, ܻሺ଴ሻ, ܼ, ܺ൯, where the subscript 

i implies the i-th subject. As a fundamental problem in causal inference, only one of ܻሺଵሻ and	ܻሺ଴ሻ 
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would be observed for each subject and the observed outcome would be denoted by	ܻ ൌ ܼܻሺଵሻ ൅

	ሺ1 െ ܼሻܻሺ଴ሻ. We have observations ሺ ௜ܻ, ܼ௜, ௜ܺሻ, i = 1, 2, ..., n. The ACE is defined as ∆ൌ ሺଵሻߤ െ  ,ሺ଴ሻߤ

where ߤሺ௥ሻ ൌ E൫ܻሺ௥ሻ൯ for r = 0, 1. To draw an inference for the ACE from an observational study, we 

assume the SITA condition (Rosenbaum and Rubin, 1983), ൫ܻሺଵሻ, ܻሺ଴ሻ൯ ٣ ܼ|ܺ, where, for arbitrary 

random variables ܣଵ, ଶܣ  and ܣଷ ଵܣ , ٣ ଷܣ|ଶܣ  implies that ܣଵ  is conditionally independent of ܣଶ 

given ܣଷ. The PS is defined as Pሺܼ ൌ 1|ܺሻ as a device for controlling confounding under the SITA 

condition, which satisfies 0 < Pሺܼ ൌ 1|ܺሻ< 1. 

 

2.2 Stratified estimator via multiple propensity scores 

We begin with summarizing the idea of the standard stratified estimator (Rosenbaum and Rubin, 1984). 

Suppose subjects are stratified into S strata in accord with the value of the PS. The number of subjects in 

the s-th stratum is denoted by ݊௦. Let തܻ௦
ሺ௥ሻ

 denote the sample means of the observed outcomes for the 

subjects assigned to ܼ ൌ in the s-th stratum, and ᇞෝ௦ൌ ݎ തܻ௦
ሺଵሻ
െ തܻ௦

ሺ଴ሻ
. The stratified estimator by the PS 

is defined by ᇞෝௌ்ோൌ ∑ ݊௦ ᇞෝ௦ോ ݊ௌ
௦ୀଵ . If the PS is common within each stratum, ᇞෝௌ்ோ	consistently 

estimates the ACE ᇞ. In practice, the PS is unknown and is estimated by regression models such as 

logistic regression to this end. We suppose the PS is estimated by a regression model and the estimated 

propensity score is denoted by eොሺܺሻ. Define a sequence 0 ൌ ଴ܥ ൏ ଵܥ ൏ ⋯ ൏ ௌܥ ൌ 1. A subject is 

classified into the s-th stratum if the PS satisfies eොሺܺሻ ∈ ሺܥௌିଵ,  ௌሿ. In principle, if the stratificationܥ

boundaries 0 ൌ ଴ܥ ൏ ଵܥ ൏ ⋯ ൏ ௌܥ ൌ 1	are taken sufficiently precisely, the PSs of the subjects in each 

stratum are expected to be close. However, too-precise stratification boundaries produce unstable 

stratum-specific estimates and may lead to a biased estimate of the ACE by construct of strata with a 

small number of samples. In practice, the stratified estimator by the PS removes more than 90 percent 

bias even with a relatively small number of strata, for example 5 (Rosenbaum and Rubin, 1984; 

Williamson, 2012). 

Misspecification in modeling of the PS may lead to seriously biased estimates (Drake, 1993; Kang and 

Schafer, 2007). To avoid misspecification, one can prepare several candidates of the PS model and can 

select the best by a model selection procedure such as Akaike Information Criteria (AIC) and Bayesian 

Information Criteria (BIC) (Claeskens and Hjort, 2008). Instead, we sought to construct strata, within 

each of which all the estimated PSs were close. Suppose we have K candidates of PS models. The PS of 

the i-th subject based on the k-th PS model is denoted by eොሺ௞ሻሺ ௜ܺሻ, k = 1, 2, ..., K, and define ࢏ࢌ ൌ

ሺࢋොሺ૚ሻሺ࢏ࢄሻ, ොࢋ
ሺ૛ሻሺ࢏ࢄሻ, … , ොࢋ

ሺ۹ሻሺ࢏ࢄሻሻ. We propose to construct strata by applying a hierarchical clustering 

method to the vector ࢏ࢌ. Clustering techniques classify subjects into several clusters (strata) and many 

clustering algorithms have been proposed (Gan et al., 2007). Although any clustering algorithm may be 

applied, we employ Ward’s minimum variance method, which is one of hierarchical clustering methods 

(Ward, 1963). Ward’s minimum variance method performs cluster integration which attains the minimum 

increase of the cluster sum of squares that indicate the total amount of distance for each object from 
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center. See among others for details of clustering techniques (Gan et al., 2007; Mirkin, 2012). Let C be 

the number of clusters. If we select sufficiently large C, ࢏ࢌ of subjects in each cluster are close to each 

other with respect to a Euclidian distance on the K-dimensional Euclidian space. Then, subjects in the 

same cluster have a close value for each element of ࢏ࢌ. 

The estimator ᇞෝெ௉ௌ based on multiple PS stratification (MPS) is defined in a similar way to the standard 

stratified estimator stratifying subjects into the strata based on clustering. The MPS is expected to 

estimate the ACE well if one of the candidates for the PS model is correctly specified. In practice, too 

precise stratification may lead to unstable estimation. The number of strata should be determined 

accounting that the number of subjects in each stratum is not so small. To construct a confidence interval 

of the ACE, regarding strata as fixed, one may use a variance formula Var෢ ሺᇞෝெ௉ௌሻ ൌ ∑ ሺ݊௖/஼
௖ୀଵ

݊ሻଶ ቄVar෢ ቀ തܻ௖
ሺଵሻ
ቁ ൅ Var෢ ቀ തܻ௖

ሺ଴ሻ
ቁቅ, where ݊௖  is the number of subjects in the c-th strata (cluster) and 

Var෢ ሺܻሺ௥ሻሻ is the sample variance of the averaged observe outcomes for the subjects assigned to Z = r in 

the c-th stratum. In this paper, this method is called the naïve method. Alternatively, one may use the 

bootstrap method to construct confidence interval. 

 

3 Simulation study 

3.1 Performance when one of candidate models is correctly specified 

In this subsection, we report results of simulation studies examining the performance of our proposed 

method. We generated 5,000 datasets as follows. Let 	ܺሺଵሻ, ܺሺଶሻ	and	ܺሺଷሻ  be independent random 

variables, which represent baseline covariates and follow U[−10, 10], on U[−4, 4] and the binomial 

distribution with P൫ܺሺଷሻ ൌ 1൯ ൌ 0.5, respectively, where U[a,b] is the uniform distribution on [a, b]. The 

sample size was set as 200 or 500. 

 

Dataset A: 

The treatment allocations and outcomes were generated as follows: 

 

logitሼPሺܼ ൌ 1|ܺሻሽ ൌ െ1.5 ൅ ሺܺሺଵሻܫ1.6 ൐ 0ሻ ൅ ܺሺଷሻ ൅ ሺܺሺଵሻܫ0.6 ൐ 0ሻܺሺଷሻ, 

ܻ ൌ 2 ൅ 2ܼ	 ൅ ሺܺሺଵሻܫ ൐ 0ሻ ൅ 0.5ܺሺଷሻ ൅ ሺܺሺଵሻܫ2 ൐ 0ሻܺሺଷሻ ൅ ߳, 

 

where logitሺݔሻ ൌ log ሺ1/ݔ െ ሻݔ  and ܺ ൌ ሺܺሺଵሻ, ܺሺଶሻ, ܺሺଷሻሻ  and ߳  is a random error following the 

standard normal distribution. 

To Dataset A, we applied our proposed method. We prepared three candidates PS models, denoted as PS1, 

PS2 and PS3 as which PS1 designated the true model for the PS. They are the logistic regression models 

with the following explanatory variables, respectively: 
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PS1 : ܫ൫ܺሺଵሻ ൐ 0൯, ܺሺଷሻ, ൫ܺሺଵሻܫ ൐ 0൯ܺሺଷሻ, 

PS2 : ܫ൫ݐଵ ൏ ܺሺଵሻ ൑ ,ଶ൯ݐ ଶݐ൫ܫ ൏ ܺሺଵሻ൯, ܺሺଷሻ, ଵݐ൫ܫ ൏ ܺሺଵሻ ൑ ,ଶ൯ܺሺଷሻݐ ଶݐ൫ܫ ൏ ܺሺଵሻ൯ܺሺଷሻ, 

PS3 : ܺሺଵሻ, ൫ܺሺଵሻ൯
ଶ
, ܺሺଷሻ, ܺሺଵሻܺሺଷሻ, ൫ܺሺଵሻ൯

ଶ
ܺሺଷሻ, 

 

where ݐଵ and ݐଶ are the 33th and 67th percentiles of ܺሺଵሻ, respectively. With these three PS models, we 

calculated the proposed estimators for the ACE with 2, 5, 7, 10 or 20 strata based on clustering by Ward’s 

minimum variance method with the Euclid metric, which are denoted by MPS2, MPS5, MPS7, MPS10 

and MPS20, respectively. We expected that with relatively small number, say 5, 7 and 10, of strata, our 

proposed method worked well since in the standard stratified estimator by the propensity score, 5 strata 

often work well. The reason for inclusion of MPS2 and MPS20 in the simulation study was to evaluate 

whether or not strata with large heterogeneity (MPS2) and strata with possibly small number of subjects 

(MPS20) might lead poor performance. For comparison, the standard stratified estimators with PS1, PS2 

and PS3 were calculated. Five strata are defined according to 20th, 40th, 60th, and 80th percentiles of 

each PS. The estimators themselves are denoted by PS1, PS2 and PS3, respectively. 

As an alternative to the proposed method, we also considered to constructing strata by applying a 

clustering method to covariates directly, which is called the direct clustering method. To vectors of 

covariates (not those of propensity scores), we applied Ward’s minimum variance method with the 

Mahalanobis metric and constructed strata. We call this estimator the stratified estimator with the direct 

clustering (DC). The number of strata was 5, 7, 10 and 20, which were denoted by DC5, DC7, DC10 and 

DC20, respectively. 

We also calculated the stratified estimator by a model-averaged estimate of the PS models. To be precise, 

the PS was estimated by the weighted average of PS1, PS2 and PS3, in which weights defined by the BIC 

according to the formula given in Example 7.2 of the textbook (Claeskens and Hjort, 2008). That is, let 

௜ be the BIC of PSi and the model averaged PS is defined as ܲܵெ஺ܥܫܤ ൌ ஻ூ஼ሺ1ሻܥ ൈ PSଵ ൅ ஻ூ஼ሺ2ሻܥ ൈ

PSଶ ൅ ஻ூ஼ሺ3ሻܥ ൈ PSଷ, where ܥ஻ூ஼ሺ݅ሻ ൌ expሺെܥܫܤ௜ 2⁄ ሻ/∑ expଷ
௜ୀଵ ሺെܥܫܤ௜ 2⁄ ሻ. The stratified estimator 

by it is denoted by model averaging (MA). We also evaluated performance of the stratified estimator by 

the PS selected by the model selection criteria BIC. We calculated the stratified estimator with the PS of 

the minimum BIC among the three models, which is denoted by model selection (MS). 

Inverse weighting by the PS is alternative to stratification by the PS (Rosenbaum, 1987). The Inverse 

probability weighting estimator is defined as ̂ߤூ௉ௐ
	 ൌ ூ௉ௐߤ̂

ሺଵሻ െ ூ௉ௐߤ̂
ሺ଴ሻ , where ̂ߤூ௉ௐ

ሺଵሻ ൌ ݊ିଵ ∑ ܼ௜ ௜ܻ/
௡
௜ୀଵ ݁̂ሺ ௜ܺሻ, 

ூ௉ௐߤ̂	
ሺ଴ሻ ൌ ݊ିଵ ∑ ሺ1 െ ܼ௜ሻ ௜ܻ/൫1 െ ݁̂ሺ ௜ܺሻ൯

௡
௜ୀଵ  and ݁̂ሺ ௜ܺሻ  is an estimate of the PS. The doubly robust 

estimator (DR) is a hybrid estimator of the IPW and a regression model for the outcome (Lunceford and 

Davidian, 2004). It is doubly robust in the sense that it estimates the ACE consistently if at least one of 

the PS model and the regression model for the outcome is correctly specified. Here we consider a doubly 

robust estimator ̂ߤ஽ோ
	 ൌ ஽ோߤ̂

ሺଵሻ െ ஽ோߤ̂
ሺ଴ሻ, where 

஽ோߤ̂
ሺଵሻ ൌ 	݊ିଵ ∑ ൛ܼ௜ ௜ܻ െ ൫ܼ௜ െ ݁̂ሺ ௜ܺሻ൯ ෝ݉ଵሺ ௜ܺሻൟ/݁̂ሺ ௜ܺሻ

௡
௜ୀଵ , 
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஽ோߤ̂
ሺ଴ሻ ൌ ݊ିଵ ∑ ൣሺ1 െ ܼ௜ሻ ௜ܻ െ ൛ሺ1 െ ܼ௜ሻ െ ൫1 െ ݁̂ሺ ௜ܺሻ൯ൟ ෝ݉଴ሺ ௜ܺሻ൧/൫1 െ ݁̂ሺ ௜ܺሻ൯

௡
௜ୀଵ , 

 

We defined the following outcome regression models for Z = r (r = 0, 1): 

ෝ݉௥ሺ ௜ܺሻ ൌ ଴ሺ௥ሻߙ ൅ ଵሺ௥ሻܺሺଵሻߙ ൅ ,ܺ|ሺܻሺ௥ሻܧ ଶሺ௥ሻܺሺଷሻ, which is a misspecified model forߙ ܼ ൌ  .ሻݎ

We applied to our proposed method, MA, MS, the standard stratified estimators, DC with ൫ܺሺଵሻ, ܺሺଷሻ൯, 

IPW and DR with PS1, PS2 or PS3. Let IPW and DR with PSi denoted by IPWi and DRi for i=1, 2, 3, 

respectively. 

 

Dataset B: 

The treatment allocation and the outcome were generated as follows: 

 

logitሼܲሺܼ ൌ 1|ܺሻሽ ൌ 0.4 ൅ 0.12ܺሺଵሻ െ 0.16ܺሺଶሻ െ 0.02ܺሺଵሻܺሺଶሻ, 

ܻ ൌ 1.8 ൅ 2ܼ	 ൅ 0.12ܺሺଵሻ െ 0.16ܺሺଶሻ െ 0.01ܺሺଵሻܺሺଶሻ ൅ ߳, 

 

where ߳ follows the standard normal distribution. To Dataset B, we prepared three candidates of the 

propensity score model, which are denoted by PS1, PS2 and PS3 and are the logistic regression with the 

following explanatory variables, respectively: 

 

PS1: ܺሺଵሻ, ܺሺଶሻ, ܺሺଵሻܺሺଶሻ, 

PS2: exp൫ܺሺଵሻ൯ , exp൫ܺሺଶሻ൯ , exp൫ܺሺଵሻ൯ exp൫ܺሺଶሻ൯, 

PS3: log൫ܺሺଵሻ൯
ଶ
, log൫ܺሺଶሻ൯

ଶ
, log൫ܺሺଵሻ൯

ଶ
log൫ܺሺଶሻ൯

ଶ
, 

 

We applied our proposed method, MA, MS, and the standard stratified estimators, DC with ൫ܺሺଵሻ, ܺሺଶሻ൯, 

IPW and DR with PS1, PS2 or PS3 In DR, we applied the model: 

ෝ݉௥ሺ ௜ܺሻ ൌ ଴ሺ௥ሻߙ ൅ ଵሺ௥ሻܺሺଵሻߙ ൅ ଶሺ௥ሻ൫ܺሺଵሻ൯ߙ
ଶ
൅	ߙଷሺ௥ሻܺሺଶሻ, which is a misspecified model for the outcome. 

The results for Datasets A and B are summarized in Tables 1 and 2, in which PS1 correctly specified the 

true model for the PS. In both simulation studies, as anticipated, the stratified estimator with a 

misspecified PS model (PS2, PS3) has a serious bias. The MPS successfully removed biases except for 

the MPS2 and MPS20. The poor performance of MPS2 suggests that stratification with insufficient 

homogeneity within each stratum may lead to poor estimates, and that of MPS20 suggests that too precise 

stratification may lead to unstable estimation. Thus, determination of the number of strata is very 

important. In order to determine the number of strata, it is very helpful to check the distribution of the PSs  

in each stratum. Thus, similar to the standard stratified estimator, a relatively small number of strata are 

recommended. The MA and MS removed biases in Dataset B, but not in Dataset A with n=500. We 

counted frequencies in which each model had the minimum BIC among the three models for 5,000 

simulated realizations. In Dataset B, PS1, which is the correctly specified PS model, attained the 
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minimum BIC in 4,201 of 5,000 cases, or 84.02 percent of the time. On the other hand, in Dataset A, PS1 

attained the minimum BIC in 55.02 percent [2,751/5,000] and the result was in 2,249/5,000 for 44.98 

percent realization, PS3, which is incorrectly specified, had the lowest BIC. This indicates that BIC may 

select suboptimal models with moderate sample size and this may have led to biases in MA and MS in 

Dataset A. Since the MPS is free from any model-selection procedures, it worked well even for Dataset A. 

Although the estimated result of MA and MS was good in Dataset B for n= 500, arising of bias was 

observed in n= 200. It is considered to be the cause that the cases where PS1, which is the correctly 

specified model of PS, under few sample situations has the minimum BIC decrease from 84.02 percent 

[4,201/5,000] to 6.3 percent [315/5,000] remarkably. In n= 200 of Dataset A, as for the case where PS1 

has the minimum BIC, reduction was similarly observed from 55.02 percent [2,751/5,000] to 2.54 percent 

[127/5,000]. In both Dataset, considerable biases were observed with DC. Moreover, also in IPW2, IPW3, 

DR2, and DR3, non negligible bias was observed in the estimated result by the incorrectly PS 

specificified model (PS2, PS3). 

 

3.2 Performance in the presence of an outlying observation 

Our proposed estimator is free from any model-selection procedures, whereas the MA and the MS based 

methods discussed in the previous subsection rely on the BIC. The BIC is based on a likelihood function 

and thus may be sensitive to outlying observations. Then, in this subsection, we ask whether or not the 

model-averaging and the model-selection may be more sensitive to outlying observations than the 

proposed method. To examine this hypothesis, we replaced the last subject of the Dataset B with a subject 

of an outlying observation. The subject has ܺሺଵሻ ൌ 20	and	ܺሺଶሻ ൌ 15, and the PS less than 0.01. We 

assign this subject to Z = 1, which hardly occurs. We apply the same method as in Dataset B, and call this 

variation Dataset B*. The results are presented in Table 3. Although the dataset is same as that in Dataset 

B except for one observation, the performances of the MA and the MS in Dataset B* were very different 

from those in Dataset B. The MA and the MS did not work well in Dataset B*. Being contaminated with 

an outlying observation, the frequency with which BIC selected the correct model PS1 decreased from 

84.02 percent [4,201/5,000] to 19.38 percent [969/5,000] leading to biased estimation of the MA and MS 

as presented in Table 3. On the other hand, the MPS worked well, except for MPS2, both in Dataset B and 

B* and seemed to be stable against outlying data. In common with Datasets A and B, non negligible bias 

was observed in DC5, DC7, DC10 and DC20. We also observed that if the PS is correctly specified, both 

the IPW and the DR have only a negligible bias, whereas they have a considerable increase in the MSE 

compared with the proposed method. 

 

3.3 Robustness against misspecification of the link function in estimation of the propensity score 

The use of the stratified PS estimator with the generalized linear model is robust against misspecification 
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of the link function (Drake, 1993). We wondered whether or not the MPS would maintain this property. 

We generated ܺሺଵሻ, ܺሺଶሻ, Z and the outcome in the same way as in Dataset B as follows: 

 

Datasets C-E: 

Pሺܼ ൌ 1|ܺሻ ൌ ଴ߚ൫ܩ ൅ ଵܺߚ
ሺଵሻ ൅ ଶܺሺଶሻߚ ൅ ଷܺߚ

ሺଵሻܺሺଶሻ൯, 

ܻ ൌ 1.8 ൅ 2ܼ	 ൅ 0.12ܺሺଵሻ െ 0.16ܺሺଶሻ െ 0.01ܺሺଵሻܺሺଶሻ ൅ ߳, 

 

where ܩ  is the cumulative distribution function of the t-distribution of degree of freedom 0.7 

ሺDataset	C ∶ ଴ߚ	 ൌ 0.4, ଵߚ ൌ 0.35, ଶߚ ൌ െ0.16, ଷߚ ൌ െ0.09ሻ, the quadratic function ܩሺݔሻ ൌ 0.004ሺݔ ൅

7.2ሻଶ	ሺDataset	D ∶ ଴ߚ	 ൌ 0.3, ଵߚ ൌ 0.23, ଶߚ ൌ െ0.08, ଷߚ ൌ െ0.04ሻ, and probit ሺDataset	E ∶ ଴ߚ	 ൌ 0.09,

ଵߚ ൌ 0.04, ଶߚ ൌ െ0.06, ଷߚ ൌ െ0.02ሻ, and ߳  follows the standard normal distribution. Again, 5,000 

datasets were generated. To these datasets, the same sets of PS models were considered as in Simulation 

study B. Table 2 summarizes the results for n=500. The MPS, as well as the standard stratified estimator 

with the correctly specified PS model (PS1), have only negligible biases indicating that they are robust 

against misspecification of the link function in the PS model. In spite of having used PS1 specified surely, 

we observed that the IPW1 and the DR1 are not robust in Datasets C. Among all simulation studies, non 

ignorable bias was observed in the DC. Moreover, in Datasets D and E, considerable biases were 

observed in the average and the MSE of MA and MS. 

 

3.4 Coverage probability 

Empirical coverage probabilities of a Wald-type confidence interval based on the variance formula, which 

is called the naïve method, were calculated with the datasets used in the previous subsections. We also 

evaluated empirical coverage probabilities of the percentile-based bootstrap confidence interval. That is, a 

confidence interval was constructed by the 2.5th and 97.5th percentiles of the estimated treatment effects 

over 1,000 bootstrapped samples in Table 5. We observed that coverage probabilities of the MPS 

evaluated by the naïve method was anti-conservative, and that coverage probabilities of the bootstrap 

confidence intervals are close to the nominal level of 95 percent for MPS5, MPS7 and MPS10. We also 

observed that with 20 strata, both methods provide substantially anti-conservative confidence intervals. 

Then, too much strata is not recommended again, and use of the bootstrap confidence interval is 

recommended. 

 

3.5 Performance with more covariates 

In this subsection, we report results of an additional simulation study with more covariates and more 

candidate PS models, which would be more practical. 

Let ܺሺ௞ሻ, k = 1, 2, ..., 10, be mutually independent random variables: for ܺሺଵሻ	̴Uሾെ10, 10ሿ, ܺሺଶሻ
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̴Uሾെ4, 4ሿ, ܺሺଷሻ̴Uሾെ7, 7ሿ, ܺሺସሻ̴Nሺ5, 4ሻ, ܺሺହሻ̴Nሺ10, 9ሻ, ܺሺ଺ሻ̴Nሺ3, 1ሻ, and ܺሺ௞ሻ, k = 7, 8, 9, 10 follow 

the binomial distribution with P൫ܺሺ଻ሻ ൌ 1൯ ൌ 0.5 , P൫ܺሺ଼ሻ ൌ 1൯ ൌ 0.5 , P൫ܺሺଽሻ ൌ 1൯ ൌ 0.6  and 

P൫ܺሺଵ଴ሻ ൌ 1൯ ൌ 0.3 respectively. The sample size was set as 200 or 500. 

 

Dataset F: 

Denote ܫெ
ሺ௞ሻ ൌ ሺܺሺ௞ሻܫ ൐ ݉ሺ௞ሻሻ ଵଶܫ ,

ሺ௞ሻ ൌ ଵݐ൫ܫ
ሺ௞ሻ ൏ ܺሺ௞ሻ ൑ ଶݐ

ሺ௞ሻ൯  and ܫଶ
ሺ௞ሻ ൌ ଵݐሺܫ

ሺ௞ሻ ൏ ܺሺ௞ሻሻ , where 

݉ሺ௞ሻ is the median of ܺሺ௞ሻ and 	ݐଵሺ௞ሻ, ݐଶሺ௞ሻ are the 33th and 67th percentiles of ܺሺ௞ሻ, respectively. The 

treatment allocations and outcomes were generated as follows. 

 

logitሼPሺܼ ൌ 1|ܺሻሽ ൌ െ1.5 ൅ ெܫ0.8
ሺଵሻ ൅ ெܫ1.2

ሺଶሻ െ ெܫ1.2
ሺଷሻ ൅ ெܫ0.8

ሺସሻ െ ெܫ1.0
ሺହሻ ൅ ெܫ1.6

ሺ଺ሻ ൅ 0.6ܺሺ଻ሻ 

																																								െ1.32ܺሺ଼ሻ ൅ 0.48ܺሺଽሻ ൅ 0.36ܺሺଵ଴ሻ ൅ ெܫ0.4
ሺଵሻܺሺଽሻ ൅ ெܫ0.4

ሺଷሻܺሺ଻ሻ ൅ ெܫ0.4
ሺହሻܺሺଽሻ 

																																								൅0.24ܫெ
ሺଶሻܺሺ଻ሻ ൅ ெܫ0.32

ሺ଺ሻܺሺ଼ሻ ൅ ெܫ0.16
ሺସሻܺሺଵ଴ሻ, 

ܻ ൌ 6 ൅ 2ܼ ൅ ெܫ0.24
ሺଵሻ ൅ ெܫ0.42

ሺଶሻ െ ெܫ0.36
ሺଷሻ ൅ ெܫ0.24

ሺସሻ െ ெܫ0.3
ሺହሻ ൅ ெܫ0.48

ሺ଺ሻ ൅ 0.75ܺሺ଻ሻ 

	െ1.95ܺሺ଼ሻ െ 0.6ܺሺଽሻ ൅ 0.45ܺሺଵ଴ሻ ൅ ெܫ0.2
ሺଵሻܺሺଽሻ ൅ ெܫ0.2

ሺଷሻܺሺ଻ሻ ൅ ெܫ0.2
ሺହሻܺሺଽሻ ൅ ெܫ0.12

ሺଶሻܺሺ଻ሻ 

								൅0.16ܫெ
ሺ଺ሻܺሺ଼ሻ ൅ ெܫ0.08

ሺସሻܺሺଵ଴ሻ+	߳, 

 

where logitሺݔሻ ൌ log ሺ1/ݔ െ ܺ ሻ andݔ ൌ ൫ܺሺଵሻ, ܺሺଶሻ, … , ܺሺଵ଴ሻ൯, and ߳ is a random error following the 

standard normal distribution. 5,000 datasets were generated. 

To the datasets, we prepared five candidates PS models, denoted as PS1(median), PS2(tertile), 

PS3(quadratic), PS4(linear) and PS5(exponential) as which PS1 designated the true model for the PS. 

They are the logistic regression models with the following explanatory variables, respectively: 

 

PS1 :ܫெ
ሺଵሻ, ெܫ

ሺଶሻ, ெܫ
ሺଷሻ, ெܫ

ሺସሻ, ெܫ
ሺହሻ, ெܫ

ሺ଺ሻ, ܺሺ଻ሻ, ܺሺ଼ሻ, ܺሺଽሻ, ܺሺଵ଴ሻ, ெܫ
ሺଵሻܺሺଽሻ, ெܫ

ሺଷሻܺሺ଻ሻ, ெܫ
ሺହሻܺሺଽሻ, ெܫ

ሺଶሻܺሺ଻ሻ, 

ெܫ
ሺ଺ሻܺሺ଼ሻ, ெܫ

ሺସሻܺሺଵ଴ሻ, 

PS2 :	ܫଵଶ
ሺଵሻ, ଶܫ

ሺଵሻ, ଵଶܫ
ሺଶሻ, ଶܫ

ሺଶሻ, ଵଶܫ
ሺଷሻ, ଶܫ

ሺଷሻ, ଵଶܫ
ሺସሻ, ଶܫ

ሺସሻ, ଵଶܫ
ሺହሻ, ଶܫ

ሺହሻ, ଵଶܫ
ሺ଺ሻ, ଶܫ

ሺ଺ሻ, ܺሺ଻ሻ, ܺሺ଼ሻ, ܺሺଽሻ, ܺሺଵ଴ሻ, 

ଵଶܫ	
ሺଵሻܺሺଽሻ, ଶܫ

ሺଵሻܺሺଽሻ, ଵଶܫ
ሺଷሻܺሺ଻ሻ, ଶܫ

ሺଷሻܺሺ଻ሻ, ଵଶܫ
ሺହሻܺሺଽሻ, ଶܫ

ሺହሻܺሺଽሻ, ଵଶܫ
ሺଶሻܺሺ଻ሻ, ଶܫ

ሺଶሻܺሺ଻ሻ, ଵଶܫ
ሺ଺ሻܺሺ଼ሻ, 

ଶܫ
ሺ଺ሻܺሺ଼ሻ, ଵଶܫ

ሺସሻܺଵ଴, ଶܫ
ሺସሻܺሺଵ଴ሻ, 

PS3 :	ܺሺଵሻ, ൫ܺሺଵሻ൯
ଶ
, ܺሺଶሻ, ൫ܺሺଶሻ൯

ଶ
, ܺሺଷሻ, ൫ܺሺଷሻ൯

ଶ
, ܺሺସሻ, ൫ܺሺସሻ൯

ଶ
, ܺሺହሻ, ൫ܺሺହሻ൯

ଶ
, ܺሺ଺ሻ, ൫ܺሺ଺ሻ൯

ଶ
, ܺሺ଻ሻ, ܺሺ଼ሻ, ܺሺଽሻ, 

ܺሺଵ଴ሻ,	ܺሺଵሻܺሺଽሻ, ൫ܺሺଵሻ൯
ଶ
ܺሺଽሻ, ܺሺଷሻܺሺ଻ሻ, ൫ܺሺଷሻ൯

ଶ
ܺሺ଻ሻ, ܺሺହሻܺሺଽሻ, ൫ܺሺହሻ൯

ଶ
ܺሺଽሻ, ܺሺଶሻܺሺ଻ሻ, ൫ܺሺଶሻ൯

ଶ
ܺሺ଻ሻ, ܺሺ଺ሻܺሺ଼ሻ, 

൫ܺሺ଺ሻ൯
ଶ
ܺሺ଼ሻ, ܺሺସሻܺሺଵ଴ሻ, ൫ܺሺସሻ൯

ଶ
ܺሺଵ଴ሻ, 

PS4 :	ܺሺଵሻ, ܺሺଶሻ, ܺሺଷሻ, ܺሺସሻ, ܺሺହሻ, ܺሺ଺ሻ, ܺሺ଻ሻ, ܺሺ଼ሻ, ܺሺଽሻ, ܺሺଵ଴ሻ, ܺሺଵሻܺሺଽሻ, ܺሺଷሻܺሺ଻ሻ, ܺሺହሻܺሺଽሻ, ܺሺଶሻܺሺ଻ሻ, 

ܺሺ଺ሻܺሺ଼ሻ, ܺሺସሻܺሺଵ଴ሻ, 

PS5 :	exp൫ܺሺଵሻ൯ , exp൫ܺሺଶሻ൯ , exp൫ܺሺଷሻ൯ , exp൫ܺሺସሻ൯ , exp൫ܺሺହሻ൯ , exp൫ܺሺ଺ሻ൯ , ܺሺ଻ሻ, ܺሺ଼ሻ, ܺሺଽሻ, ܺሺଵ଴ሻ, 

 

The results for Dataset F are summarized in Table 4, in which PS1 correctly specified the true model for 

the PS. We observed that DC had substantial biases with relatively large number of covariates. Despite an 
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increment of the PS candidates, proposed method observed successfully removed biases under the 

complicated situation. Non ignorable bias was observed for MA and MS. 

 

4 Example 

In this section, we illustrate our proposed method using a dataset from the Tone study, which is a 

community survey conducted in Japan (Miyamoto, 2009). Subjects’ baseline covariates were collected 

from 2001 to 2002 by interviews using a structured questionnaire recording age, sex, education and 

assessing previous medical and psychiatric diseases and dementia risk factors. After completing the 

interview, all participants underwent a group assessment which used a set of five tests measuring the 

following cognitive domains: attention, memory, visuospatial function, language and reasoning (The 

Five-Cog test). The Five-Cog test can evaluate the levels of mild cognitive impairment called aging 

associated cognitive decline and can be used to screen for elderly subjects who are at high risk of 

developing dementia. All participants underwent the same cognitive assessment at the 3-year follow up. 

We enrolled 935 subjects with baseline measurements and the follow-up data at 2005 in our dataset. The 

primary objective of the Tone study was to examine whether a physical examination contributes to the 

prevention of dementia. Subjects were assigned to either the physical examination or the observational 

groups. The assignment was not determined randomly, but according to the subject’s preference. Two 

hundred and thirty-four and 701 subjects were assigned to the physical examination and the observational 

groups, respectively. We use the memory score as the outcome variable for illustration. The baseline 

memory score was unbalanced between the two groups: the physical examination group had a median 

score of 13.1 (the lower and upper 25% percentiles: 9, 16) and the observational group had 9.8 (6, 13). 

Educational status was also unbalanced: subjects receiving <9 years, 9-12 years, and >12 years of 

education comprised 46/234 = 19.6%, 130/234 = 55.6% and 58/234 = 24.8%, of the physical examination 

group, versus 339/701 = 48.3%, 228/701 = 41.1% and 74/701 = 10.6% of the observational group. These 

covariates may be associated with the outcome, the memory score at 2004. Therefore, they must be 

adjusted in estimating the ACE. We applied the following logistic regression for modeling the PS: 

 

logitሼܲሺܼ ൌ 1|ܺሻሽ ൌ ଴ߙ ൅ ܧܩܣଵߙ ൅ ܴܧܦܰܧܩଶߙ ൅ 1ܷܦܧଷଵߙ ൅ 2ܷܦܧଷଶߙ ൅  ܧܭܱܯସܵߙ

																																								൅ߙହܭܰܫܴܦ ൅ ܲܧܧܮ଺ܵߙ ൅ ݄ሺܰܧܯሻ, 

 

where ܧܩܣ, ,ܴܧܦܰܧܩ ,ܭܰܫܴܦ,ܧܭܱܯܵ  ,are age at 2001, gender, smoking status ܰܧܯ	and	ܲܧܧܮܵ

drinking status, napping status, the memory score at 2001, and ݄ሺ. ሻ is a function. 1ܷܦܧ	and	2ܷܦܧ are 

dummy variables for educational status of less than 9 years and that of 9 to 12 years, respectively. 

Considering three functions as ݄ሺ. ሻ, we defined three candidates for the PS model: 

 

PS1: ݄ሺܰܧܯሻ ൌ ܰܧܯଵ଼ߙ ൅  ,ଶܰܧܯଶ଼ߙ
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PS2: ݄ሺܰܧܯሻ ൌ ଵݐሺܫଵ଼ߙ ൏ ܰܧܯ ൑ ଶሻݐ ൅ ଶݐሺܫଶ଼ߙ ൏  ,ሻܰܧܯ

PS3: ݄ሺܰܧܯሻ ൌ ሺ݉଴.ହܫ଼ߙ ൏  ,ሻܰܧܯ

 

where ݉଴.ହ is the empirical median of ܰܧܯ. With these three PS models, we applied our proposed 

method with 5, 7, 10 or 20 strata constructed by Ward’s minimum variance method. They are denoted by 

MPS5, MPS7, MPS10 and MPS20, respectively. It is very important to determine how many strata are 

used in our proposed method. The simulation studies presented in Section 3 indicates that too many strata 

may lead to biased estimates, and that a relatively small number of strata are more effective. The R2 

measure in clustering (Massart and Kaufman, 1983) was 0.951 with 7 strata and 0.969 with 10 strata. 

With 10 strata, one of the 10 strata had only 10 subjects (7 in the physical examination group and 3 in the 

observational group) and the stratum-specific average may be unstable. From these observations, we 

determined to estimate the ACE with 7 strata. Estimates are presented in Table 6, together with the 

stratum-specific difference of means, in which confidence intervals by the naïve method is presented. In 

the standard stratified estimation by the propensity score, it is very important to check the overlap of the 

distributions of the PS between the two groups. This is true in applying the proposed stratified estimation 

with the multiple PSs. Table 6 also shows ranges of the three PSs in each group in each stratum. It 

indicates that within each of 7 strata, the two groups had a good overlap for all three PSs. We also 

observed that ranges given in Table 6 are similar to those by the standard stratified analysis of each PS 

with 5 strata by 20th, 40th, 60th, and 80th percentiles. Thus, the proposed estimator is anticipated to work 

better than the standard stratified estimator regardless of the choice of the PS model. In Table 7, we 

summarize estimates with our proposed method, together with the crude estimate (no adjustment) and the 

standard stratified estimators with PS1, PS2 or PS3 respectively. The bootstrap 95 percent confidence 

intervals given in Table 7 were based on 1000 replicates. The difference of simple sample means of the 

physical examination and the observational groups was 7.06 (95%CI: 6.18, 7.91). PS1, PS2 and PS3 were 

3.91(3.03, 4.71), 4.02 (3.17, 4.87) and 4.59 (3.67-5.41) respectively. Estimate with PS3 was larger than 

that by PS1 or that by PS2. Then, one may wonder which result was most reliable. MPS7 was 4.01 (3.17, 

4.84), indicating that PS3 is not reliable. 

 

5 Conclusions 

Our estimator can incorporate multiple PS models and removes bias if one of them specifies the PS 

correctly. In the standard stratified estimator by the PS, one can easily stratify subjects according to the 

PS since it is scalar. This simplicity is lost in our proposed method. However, our method is still simple 

and the use of clustering techniques enables us to construct strata based on multiple PSs efficiently. 

Stratified analysis by the PS has an advantage over the IPW estimator and the doubly robust estimator in 

its simplicity and robustness: it is easy for non-statisticians to understand and is robust against highly 

variable weights, outlying observations and misspecification of the link function in modeling of the PS. 
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Through the simulation studies, we observed that the simple percentile-based bootstrap confidence 

interval works satisfactorily, although more complicated variants such as BCa bootstrap can be employed 

for the standard stratified estimator by the PS (Tu and Zhou, 2002). 

We considered only Ward’s minimum variance method in clustering PS vectors. Any hierarchical 

clustering techniques can be applied (Gan et al., 2007). Although we did not show the results, our 

simulation study for comparison of performances with several clustering methods suggest that 

performance of the estimator does not rely strongly on the choice of the clustering method. Regardless of 

choice of a clustering method, as done in Table 6, it is important to check the overlap of each PS included 

in clustering.  

Non-linear regression techniques such as the generalized additive model (Hasti and Tibsirani, 1993) or 

machine learning techniques (Lee et al., 2010) may be useful to against biases due to misspecification.  

Performance of these methods strongly relies on smoothing parameters and stopping rules, respectively, 

and selection of them is crucial. Our method can reduce risk of misspecification by incorporating several 

candidate models in a simple way without relying on model-selection criteria, which may not work well 

in practice as demonstrated in Simulation section.  

By combining several PS models with nonlinear or machine learning techniques, risk can be further 

reduced. Recently, Han and Wang (2013) proposed an estimator of multiple robustness. Their 

empirical-likelihood-based estimator can incorporate multiple PS models and outcome regression models, 

and if at least one of the PS models and the outcome regression models hold, the estimator is shown to be 

consistent. To execute their estimator, one must solve an equation, which may suffer from a multiple roots 

issue or a non-convergence issue. Although this issue was tackled by the latest paper Han (2014), which 

proposed the algorithm with easy solving and implementing the multiple roots issue in Han and Wang 

(2013), it is still complicated. Although formal theoretical justification of consistency has not been made, 

our method provides a very simple way to apply multiply robust estimation. Indeed, our method can be 

easily implemented using a standard statistical software covering logistic regression and clustering.  

The PS matching has been widely used in practice for a very long time (Connors et al., 1996; Ayanian et 

al., 2002; Abidov et al., 2005; Shishehbor et al., 2006). Our idea to utilize multiple PSs jointly can 

provide some benefits to matching analysis. That is, one may construct matched samples robust against 

misspecification of the PS model based on a vector of several PSs by using a distance such as the 

Mahalanobis distance. Recently, Leacy and Stuart (2014) proposed new matching approach based on a 

pair of the PS and an alternative balancing score called the prognostic score. Their idea can be generalized 

to multiple robust matching incorporating the multiple PSs and prognostic scores. 
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Table 1 Summary of results of the simulation study for evaluation of empirical biases (Average), 

mean-squared errors (MSE) in n=500:PS1 correctly specifies the propensity score.  

 

Dataset A Dataset B 

Method   
Average 

(true=2) 
MSE 

Average 

(true=2) 
MSE 

Stratification 

PS1 2.00  0.012 2.04  0.012  

PS2 2.35  0.138 2.25  0.073  

PS3 2.22  0.064 2.55  0.316  

Clustering 

MPS2 2.27 0.113 2.19 0.047 

MPS5 2.03  0.014 2.08  0.017  

MPS7 2.01  0.012 2.05  0.014  

MPS10 2.00  0.013 2.03  0.012  

MPS20 1.98  0.015 1.97  0.013  

Direct 

Clustering 

DC5 2.26 0.096 2.15 0.034 

DC7 2.20 0.060 2.11 0.023 

DC10 2.14 0.036 2.07 0.017 

DC20 2.05 0.018 2.02 0.013 

BIC Based 
MA 2.17  0.043 2.05  0.014  

MS 2.09  0.030 2.07  0.018  

Weighting 

IPW1 2.02  0.012 2.01  0.012  

IPW2 2.33  0.125 2.36  0.147  

IPW3 2.17  0.048 2.55  0.316  

Doubly Robust 

DR1 2.00  0.013 2.00  0.013  

DR2 2.24  0.073 2.30  0.164  

DR3 2.20  0.059 2.46  0.220  
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Table 2 Summary of results of the simulation study for evaluation of empirical biases (Average), 

mean-squared errors (MSE) in small samples (n=200):PS1 correctly specifies the propensity score.  

 

Dataset A Dataset B 

Method   
Average 

(true=2) 
MSE 

Average 

(true=2) 
MSE 

Stratification 

PS1 2.00  0.032 2.04  0.031  

PS2 2.34  0.156 2.26  0.099  

PS3 2.22  0.085 2.55  0.336  

Clustering 

MPS2 2.27 0.113 2.19 0.047 

MPS5 2.02  0.035 2.06  0.034  

MPS7 1.99  0.035 2.02  0.032  

MPS10 1.96  0.039 1.98  0.032  

MPS20 1.83  0.071 1.86  0.051  

Direct 

Clustering 

DC5 2.25 0.116 2.14 0.050 

DC7 2.18 0.079 2.09 0.040 

DC10 2.10 0.054 2.05 0.034 

DC20 1.90 0.055 1.92 0.040 

BIC Based 
MA 2.21  0.081 2.19  0.071  

MS 2.21  0.080 2.24  0.091  

Weighting 

IPW1 2.07  0.040 2.03  0.031  

IPW2 2.37  0.170 2.39  0.187  

IPW3 2.22  0.094 2.55  0.337  

Doubly Robust 

DR1 2.00  0.036 2.01  0.035  

DR2 2.24  0.093 2.31  0.141  

DR3 2.18  0.110 2.46  0.238  
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Table 3 Summary of results of the simulation study (n=500) for evaluation of empirical biases (Average), 

mean-squared errors (MSE) in the presence of misspecification of the link function in estimation of the 

propensity score: misspecification in PS1 lies only on the link function. 

 

  

Dataset B* 

(with outlier) 

Dataset C 

(PS1 has a 

 misspecified  

link function) 

Dataset D 

(PS1 has a 

misspecified  

link function) 

Dataset E 

(PS1 has a 

misspecified  

link function) 

Method   
Average 

(true=2) 
MSE

Average 

(true=2) 
MSE

Average 

(true=2) 
MSE

Average 

(true=2) 
MSE

Stratification 

PS1 2.04  0.012 2.03  0.014 2.03  0.015  2.04  0.012 

PS2 2.25  0.074 2.38  0.167 2.20  0.057  2.16  0.038 

PS3 2.54  0.304 2.75  0.577 2.36  0.152  2.36  0.141 

Clustering 

MPS2 2.19 0.049 2.24 0.069 2.14 0.035 2.11 0.022

MPS5 2.08  0.017 2.06  0.018 2.04  0.016  2.04  0.012 

MPS7 2.06  0.014 2.04  0.015 2.03  0.015  2.02  0.011 

MPS10 2.04  0.013 2.01  0.015 2.01  0.015  2.01  0.010 

MPS20 1.99  0.012 1.94  0.020 1.98  0.017  1.98  0.011 

Direct 

Clustering 

DC5 2.14 0.030 2.19 0.053 2.09 0.023 2.10 0.021

DC7 2.11 0.023 2.14 0.033 2.06 0.018 2.08 0.016

DC10 2.07 0.017 2.09 0.022 2.04 0.016 2.05 0.013

DC20 2.02 0.012 2.01 0.017 1.99 0.016 2.02 0.011

BIC Based 
MA 2.19  0.053 2.03  0.014 2.16  0.045  2.07  0.016 

MS 2.20  0.059 2.03  0.014 2.19  0.055  2.11  0.024 

Weighting 

IPW1 2.00  0.028 1.87  0.053 2.01  0.013  2.01  0.010 

IPW2 1.72  1.601 2.37  0.269 2.26  0.084  2.25  0.074 

IPW3 2.54  0.304 2.75  0.576 2.37  0.153  2.36  0.141 

Doubly Robust 

DR1 2.00  0.046 1.76  0.135 2.01  0.015  2.01  0.010 

DR2 2.29  0.175 2.18  7.142 2.26  0.085  2.29  0.065 

DR3 2.46  0.219 2.71  0.512 2.32  0.118  2.23  0.097 
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Table 4 Summary of results of the simulation study under the situation with more covariates (Dataset F).  

 

  n=200 n=500 

Method  
Average 

(true=2) 
MSE 

Average 

(true=2) 
MSE 

Stratification 

PS1 2.05 0.095 2.10 0.033 

PS2 2.24 0.144 2.28 0.098 

PS3 2.20 0.131 2.26 0.086 

PS4 2.24 0.123 2.26 0.087 

PS5 2.43 0.219 2.43 0.194 

Clustering 

MPS5 2.04 0.092 2.14 0.040 

MPS7 1.98 0.097 2.10 0.035 

MPS10 1.89 0.107 2.08 0.033 

MPS20 1.61 0.227 2.00 0.032 

Direct 

Clustering 

DC5 2.81 0.701 2.81 0.674 

DC7 2.76 0.622 2.76 0.600 

DC10 2.69 0.528 2.71 0.527 

DC20 2.49 0.285 2.61 0.387 

BIC Based 
MA 2.41 0.212 2.24 0.079 

MS 2.42 0.216 2.25 0.086 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Table 5 Summary of results of the simulation study for evaluation of coverage probabilities. 

 

Method Naïve Bootstrap 

Dataset A 

(n=500) 

 

MPS5 0.930  0.947  

MPS7 0.947  0.961  

MPS10 0.945  0.963  

MPS20 0.908  0.942  

Dataset A 

(n=200) 

MPS5 0.922 0.973  

MPS7 0.918 0.968  

MPS10 0.888 0.948  

MPS20 0.672 0.579  

Dataset B 

(n=500) 

MPS5 0.885  0.912  

MPS7 0.915  0.947  

MPS10 0.931  0.968  

MPS20 0.912  0.941  

Dataset B 

(n=200) 

MPS5 0.913 0.971  

MPS7 0.914 0.975  

MPS10 0.897 0.955  

MPS20 0.775 0.703  
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Table 6 Stratum-specific treatment effects and the average causal effect estimated by the proposed 

method with seven clustering-based strata in the Tone study: confidence intervals are based on the naïve 

method. 

 

Strata group n PS1(range) PS2(range) PS3(range) Estimate (95%CI) 

1 
Z=1 15 0.051 - 0.114 0.057 - 0.094  0.057 - 0.108  

5.33(2.86, 7.80) 
Z=0 157 0.025 - 0.116  0.036 - 0.120  0.036 - 0.131  

2 
Z=1 19 0.075 - 0.187 0.106 - 0.177  0.095 - 0.189  

2.83(0.22, 5.43) 
Z=0 164 0.070 - 0.198  0.091 - 0.197  0.080 - 0.194  

3 
Z=1 26 0.162 - 0.242 0.147 - 0.238  0.160 - 0.266  

4.73(2.48, 6.99) 
Z=0 93 0.108 - 0.264  0.141 - 0.249  0.152 - 0.283  

4 
Z=1 33 0.237 - 0.305  0.201 - 0.319  0.201 - 0.337  

3.97(2.00, 5.94) 
Z=0 83 0.165 - 0.300  0.193 - 0.319  0.199 - 0.364  

5 
Z=1 28 0.279 - 0.404 0.269 - 0.410  0.242 - 0.441  

3.74(1.94, 5.54) 
Z=0 76 0.272 - 0.399  0.244 - 0.405  0.249 - 0.430  

6 
Z=1 48 0.356 - 0.484 0.347 - 0.494  0.334 - 0.485  

3.10(1.22, 4.99) 
Z=0 59 0.350 - 0.486  0.336 - 0.485  0.327 - 0.533  

7 
Z=1 63 0.437 - 0.697  0.418 - 0.648  0.426 - 0.616  

4.24(2.59, 5.89) 
Z=0 60 0.437 - 0.671  0.472 - 0.625  0.399 - 0.616  

Pooled 
Z=1 232 0.051 - 0.697  0.057 - 0.648  0.057 - 0.616  

4.01(3.13, 4.88) 
Z=0 692 0.025 - 0.671 0.036 - 0.625  0.036 - 0.616  
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Table 7 Summary of the estimated average causal effects with a bootstrap confidence interval in the Tone 

study. 

 

Method PS # of strata ACE (95%CI) 

Crude 7.06(6.18, 7.91) 

 

Stratification by PS PS1 5 3.91(3.03, 4.71) 

PS2 5 4.02(3.17, 4.87) 

PS3 5 4.59(3.67, 5.41) 

 

Proposed MPS5 5 4.02(3.29, 4.99) 

MPS7 7 4.01(3.17, 4.84) 

MPS10 10 3.97(3.04, 4.75) 

  MPS20 20 3.89(2.81, 4.61) 
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