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OBJECTIVES The aim of this study was to compare the effect of pioglitazone with glimepiride on

coronary arterial inflammation with serial 18F-fluorodeoxyglucose (FDG)–positron emission tomography

(PET) combined with computed tomography (CT) angiography.

BACKGROUND Recent studies have shown that FDG-PET combined with CT is a reliable tool to visu-

alize and quantify vascular inflammation. Although pioglitazone significantly prevented the progression

of coronary atherosclerosis and reduced the recurrence of myocardial infarction in patients with type 2

diabetes mellitus (DM), it remains unclear whether pioglitazone could attenuate coronary artery

inflammation.

METHODS Fifty atherosclerotic patients with impaired glucose tolerance or type 2 DM underwent

determination of blood chemistries, anthropometric and inflammatory variables, and FDG-PET/CT angi-

ography, and then were randomized to receive either pioglitazone or glimepiride for 16 weeks. Effects of

the treatments on vascular inflammation of the left main trunk were evaluated by FDG-PET/CT angiog-

raphy at baseline and end of the study. Vascular inflammation of the left main trunk was measured by

blood-normalized standardized uptake value, known as a target-to-background ratio.

RESULTS Three patients dropped out of the study during the assessment or treatment. Finally, 25

pioglitazone-treated patients and 22 glimepiride-treated patients (37 men; mean age: 68.1 � 8.3 years;

glycosylated hemoglobin: 6.72 � 0.70%) completed the study. After 16-week treatments, fasting plasma

glucose and glycosylated hemoglobin values were comparably reduced in both groups. Changes in

target-to-background ratio values from baseline were significantly greater in the pioglitazone group

than in the glimepiride group (–0.12 � 0.06 vs. 0.09 � 0.07, p ¼ 0.032), as well as changes in high-

sensitivity C-reactive protein (pioglitazone vs. glimepiride group: median: –0.24 [interquartile range

(IQR): –1.58 to –0.04] mg/l vs. 0.08 [IQR: –0.07 to 0.79] mg/l, p ¼ 0.031).

CONCLUSIONS Our study indicated that pioglitazone attenuated left main trunk inflammation in

patients with impaired glucose tolerance or DM in a glucose-lowering independent manner, suggesting

that pioglitazone may protect against cardiac events in patients with impaired glucose tolerance or DM

by suppressing coronary inflammation. (Anti-Inflammatory Effects of Pioglitazone; NCT00722631) (J Am

Coll Cardiol Img 2013;6:1172–82) ª 2013 by the American College of Cardiology Foundation

http://clinicaltrials.gov/ct2/show/NCT00722631?term=NCT00722631%26rank=1
http://dx.doi.org/10.1016/j.jcmg.2013.09.004
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upture of atherosclerotic plaques in the cor-
onary artery could lead to the clinical mani-
A B B R E V I A T I O N S

A N D A C R O N YM S

CT = computed tomography

DM = diabetes mellitus

FDG = 18F-fluorodeoxyglucose

FPG = fasting plasma glucose

HbA1c = glycosylated

hemoglobin

hsCRP = high-sensitivity

C-reactive protein

IGT = impaired glucose tolerance

IQR = interquartile range

LMT = left main trunk

PET = positron emission

tomography

SUV = standardized uptake

value

TBR = target-to-background

ratio
festation of acute coronary syndrome (1–4).
Accumulation of macrophages in the athero-

sclerotic vessels is among the characteristic features of
vulnerable plaques (1–4). Therefore, development of
novel imaging modality to assess the macrophage
content and its activity in the coronary artery
would be required to facilitate a screening of high-
risk patients and identify those with vulnerable
atherosclerotic plaques.

18F-Fluorodeoxyglucose (FDG) imaging by posi-
tron emission tomography (PET) is commonly
employed for the screening and detection of occult
tumors (5–7). Recently, it has been used to identify
the extent of vasculitis for both Takayasu and Ka-
wasaki diseases (8–10) and to evaluate the carotid
plaque inflammation in high-risk patients (11–16).
Rudd et al. (11) reported that most of the FDG ac-
cumulations in carotid arteries corresponded to the
macrophage-rich area of the atherosclerotic plaques
in patients with symptomatic carotid atherosclerosis.
FDGuptake in the carotid artery has also been shown
to correlate with macrophage staining from the cor-
responding histological sections in patients who
subsequently underwent carotid endarterectomy
(12). These observations have suggested that FDG-
PET is a noninvasive tool to evaluate the vascular
inflammation and identify the macrophage-rich,
vulnerable atherosclerotic plaques in humans.

Coronary artery disease is more prevalent and
severe in patients with type 2 diabetes mellitus
(DM) or impaired glucose tolerance (IGT) than in
subjects with normal glucose tolerance (17,18).
Pioglitazone, a peroxisome proliferator-activated re-
ceptor-gamma agonist, is a widely used drug for the
treatment of DM (19). It improves insulin resistance
and subsequently decreases plasma glucose as well
as glycosylated hemoglobin (HbA1c) values in
patients with DM (19). In addition, several clinical
studies have shown that pioglitazone may have athe-
roprotective properties in humans (20–24). The
CHICAGO (Carotid Intima Media Thickness
in Atherosclerosis Using Pioglitazone) (23) and
PERISCOPE (Pioglitazone Effect on Regression
of Intravascular Sonographic Coronary Obstruction
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Prospective Evaluation) (24) studies have demon-
strated that pioglitazone, comparedwith an equipotent
glucose-lowering agent, glimepiride, significantly
prevents the progression of coronary atherosclerosis.
In the PROACTIVE (Prospective Pioglitazone
Clinical Trial in Macrovascular Events) studies, pio-
glitazone remarkably reduced the recurrence of stroke
and acute coronary syndrome in high-risk diabetic
patients (20–22). We also demonstrated by FDG-
PET that pioglitazone attenuated the inflammation
of carotid arteries and aortas (16). These findings
suggest that pioglitazone may suppress coronary
inflammation and have a plaque-stabilizing effect.
Therefore, in this study, we examined whether pio-
glitazone could attenuate left main trunk (LMT)
inflammation in patients with IGT or type 2 DM by
using serial FDG-PET and computed tomography

(CT) angiography.

METHODS

Design and subjects. This study was a pro-
spective, randomized, active comparator-
controlled, single-center trial to look at
coronary artery inflammation a priori
involving 16 weeks of study-drug adminis-
tration and follow-up, although some sub-
jects were enrolled in our previous carotid
study (16). We screened patients with
IGT or type 2 DM who had ultrasonic
evidence of carotid atherosclerosis. We
excluded any patients with a history of
hypersensitivity reactions to iodinated
contrast media, with acute coronary syn-
drome, with symptomatic stroke within at
least 6 months before the enrollment, with
uncontrolled diabetes (fasting plasma

glucose [FPG]$200 mg/dl), with insulin treatment,
with left ventricular dysfunction (left ventricular
ejection fraction <40%) or heart failure (New York
Heart Association functional class $II), with
neoplastic disorders, and with active inflammatory
diseases. Fifty-seven patients underwent FDG-PET.
Myocardial FDG uptake was visually evaluated
by a quantitative analysis of scores 0 to 3 (0 ¼ no
uptake; 1 ¼ mild uptake; 2 ¼ moderate uptake; and
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3¼ severe uptake). Patients whose score was$2 were
also excluded because coronary artery inflammation
cannot be evaluated under such intense myocardial
FDG uptakes (25–28). Fifty atherosclerotic patients
were randomized to receive either pioglitazone or
glimepiride for 16 weeks. Three patients dropped out
of the study during the assessment or treatment.
Finally, 47 patients were evaluated at baseline and
16 weeks of follow-up with FDG-PET/CT angiog-
raphy examinations. The disposition of patients in the
study is shown in Figure 1. The study protocol was
approved by the Ethics Committee of Kurume Uni-
versity. All subjects provided written informed
consent.
Carotid ultrasonography. The carotid wall thickness
of the bilateral carotid arteries was measured
by duplex ultrasonography (SSA-380A, Toshiba
Medical Systems Corp., Tochigi, Japan) with a 10-
MHz transducer as described previously (14,15).
Longitudinal B-mode images at the diastolic phase of
the cardiac cycle were recorded by a single trained
technician, who was blinded to the subject’s back-
ground. The images were magnified and printed us-
ing a high-resolution line recorder (LSR-100A,
Toshiba Medical Systems Corp.). The maximum
intima-media thickness was measured at the thickest
wall of internal and common carotid arteries. The
presence of atherosclerosis was defined as a thick-
ening of the maximum intima-media thickness
>1.1 mm (29).
Treatments. Eligible patients were randomly assigned
to receive either pioglitazone 15 to 30 mg daily
(n ¼ 25) or glimepiride 0.5 to 4 mg daily as an
active comparator (n ¼ 22) for 16 weeks. The
initial dose of study drugs was based on fasting
glucose level, and then doses of pioglitazone or
glimepiride were titrated to obtain target glycemic
control defined as a FPG level of 110 mg/dl or
lower. Other medications for hypertension, dia-
betes, or dyslipidemia or antiplatelet agents were
not altered within the past 16 weeks and remained
unchanged during the course of the study period.
Data collection. Presence of smoking habit, medical
history, use of medication, and family history of
cardiovascular disease were assessed by a question-
naire. Smoking was classified as current habitual use
or not. Waist circumference was measured at the
umbilical level in the late exhalation phase as an index
of the presence or absence of abdominal obesity.
Blood pressure was measured in the sitting position
using an upright standard sphygmomanometer.
Vigorous physical activity and smoking were avoided
for at least 30 min before measurements of resting
blood pressure and heart rate. Bloodwas drawn on the
same day of FDG-PET image acquisition after 12-h
fasting from the antecubital vein in the morning for
the determinations of blood chemistries: total choles-
terol, low-density lipoprotein cholesterol, triglycerides,
and high-density lipoprotein cholesterol; FPG, fasting
serum immunoreactive insulin, HbA1c, and high-
sensitivity C-reactive protein (hsCRP). These blood
chemistriesweremeasuredwith standardmethods at a
commercially available laboratory (TheKyodo Igaku
Laboratory, Fukuoka, Japan) as described previously
(13–16).
FDG-PET and CT angiography. FDG-PET and CT
angiography was performed as described previously
(16). In brief, after at least a 12-h fasting prior to
PET scanning, patients received a single intravenous
bolus injection of FDG (4.2 MBq [0.12 mCi]/kg
body weight) via the antecubital vein. PET scan was
performed 3 h after the FDG administration. The
patients rested for 3 h in a comfortable position in a
quiet room and were then conveyed to the scanning
suite. Three hours after the FDG injection, contrast
medium on a dose-by-weight basis was administered
and 3-dimensional cardiac PET and CT angiog-
raphy were carried out using an integrated full-ring
PET/CT scanner (Gemini-GXL 16, Philips Medi-
cal Systems, Inc., Cleveland, Ohio). Sixteen-slice
multidetector CT was used in this study. For the
contrast-enhanced scan, 100 ml of contrast media
(Iohexol, Daiichi Sankyo, Tokyo, Japan) was injected
at 3.0 ml/s with biphasic injection of a 20-ml saline
chaser. The CT data were used for attenuation
correction and lesion localization. After both the
transmission and emission images were obtained, the
images were reconstructed using the 3-dimensional
line-of-response row-action maximum likelihood
algorithm (Philips, Eindhoven, the Netherlands).
The PET images were appropriately coregistered
with CT angiography images by a nuclear investi-
gator using a strategy of prioritizing the registration
of the ascending aorta given that it is discernable on
both PET andCT image for reproducible evaluation.
Two independent experienced cardiologists, who
were blinded to the patients’ clinical history and
classification, engaged in the process of coregistration
and reviewed the PET/CT scans for myocardial and
coronary FDG uptakes.
Evaluation of vascular inflammation of the LMT. To
minimize the myocardial glucose uptake for better
visualization of coronary artery FDG uptake, FDG-
PET image was acquired after at least a 12-h period
of fasting. Analyses were performed on the LMT
just before the bifurcation to avoid spillover of
activity from the aorta or myocardium (Fig. 2). The
position of the LMT was identified by the CT



Figure 2. FDG-PET and CT Angiography

18F-fluorodeoxyglucose accumulation was quantified in the left main trunk
(LMT). CTA ¼ computed tomography angiography; LAD ¼ left anterior
descending; LCX ¼ left circumflex artery; other abbreviations as in Figure 1.

IGT or T2DM patients who underwent carotid artery
ultrasound and FDG-PET/CT angiography imaging

27 allocated to pioglitazone
15-30 mg

1 cancer
1 dropped out

23 allocated to glimepiride
0.5-4 mg

Atherosclerotic patients assigned for eligibility

50 randomized

1 dropped out

Follow-up FDG-PET/CT

- 16 Weeks -

Figure 1. Disposition of Patients

CT ¼ computed tomography; FDG ¼ 18F-fluorodeoxyglucose; IGT ¼ impaired glucose tolerance; PET ¼ positron emission tomography;
T2DM ¼ type 2 diabetes mellitus.
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angiography (Fig. 2). The intensity of FDG uptake
was quantified by measuring the standardized uptake
value (SUV) corrected for body weight and injected
FDG dose. The SUV was calculated by using the
maximum pixel activity value within the region of
interest placed on the entire vasculature obtained
from the consecutive coregistered sagittal FDG-
PET and CT angiography images (Fig. 2). The
SUV score was determined as the average of SUV
of the LMT obtained from consecutive 5 PET/CT
images, each separated by 4 mm in length. The SUV
score of the LM was corrected for blood activity by
dividing by the average blood SUV estimated from
the inferior vena cava to produce a blood-corrected
artery SUV known as a target-to-background ratio
(TBR). For assessment of intra- and inter-reader
reproducibility, TBR values were measured in all
patients by 2 cardiologists who were blind to patients’
clinical information. The blinded intraobserver
and interobserver reliability analysis for the TBR
values revealed intraclass correlation coefficients
between readers of 0.97 and 0.93, respectively, in
the LMT.
Statistical methods. Data were presented as mean �
SD or median (interquartile range [IQR]). We
performed the Shapiro-Wilk test to evaluate the
assumption of normality. Statistical analysis was
performed by means of appropriate parametric and
nonparametric methods. Treatment groups were
compared at baseline by using an unpaired Student
t test for continuous variables and chi-square for
categorical variables. First, paired Student t test was
performed for comparisons between the baseline
and post-treatment values. Second, the changes
from baseline were compared by unpaired Student
t test between the 2 groups. Values of p < 0.05 were
considered to indicate statistical significance. All
statistical analyses were performed with the use of
the SPSS system (SPSS Inc., Chicago, Illinois).



Table 1. Patient Characteristics

Pioglitazone
(n [ 25)

Glimepiride
(n [ 22) p Value

Male 19 18 0.897

Age, yrs 68.8 � 7.2 67.3 � 9.3 0.563

Waist circumference, cm 64.4 � 12.5 65.3 � 10.8 0.794

Maximum carotid IMT, mm 1.84 � 0.76 1.95 � 1.06 0.669

Systolic blood pressure, mm Hg 128.0 � 12.3 123.5 � 13.3 0.239

Diastolic blood pressure, mm Hg 70.8 � 9.0 69.0 � 9.3 0.511

Lipid profile

LDL cholesterol, mg/dl 108.4 � 23.8 117.6 � 24.8 0.210

HDL cholesterol, mg/dl 49.9 � 12.8 51.3 � 13.0 0.723

Triglycerides, mg/dl 105.0 (79.5–125.5) 120.0 (74.8–164.0) 0.965

Glycemic state

Fasting plasma glucose, mg/dl 121.0 (105.5–140.0) 129.0 (119.5–145.5) 0.249

Fasting plasma insulin, mU/ml 6.80 (4.55–11.20) 4.85 (3.63–8.45) 0.157

Hemoglobin A1c, % 6.61 � 0.73 6.85 � 0.64 0.247

High-sensitivity CRP, mg/dl 0.78 (0.34–1.93) 0.61 (0.35–1.47) 0.466

Risk factor

Current smoking 4 4 0.849

Hypertension 23 19 0.88

Family history of CVD 10 12 0.319

Drugs

ACE-Is or ARBs 14 16 0.234

Beta-blockers 11 9 0.831

Calcium channel blockers 15 12 0.706

Aspirin 13 16 0.145

Statins 13 9 0.447

Values are n, mean � SD, or median (interquartile range).
ACE-I¼ angiotensin-converting enzyme inhibitors; ARB¼ angiotensin II receptor blockers; CRP¼C-reactive

protein; CVD ¼ cardiovascular disease; HDL ¼ high-density lipoprotein; IMT ¼ intima-media thickness;
LDL ¼ low-density lipoprotein.
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RESULTS

Clinical characteristics. Three patients did not
complete the assessment or treatment of the study;
47 patients did complete the study (n ¼ 25 in the
pioglitazone group and n ¼ 22 in the glimepiride
group) (Fig. 1). The average age of patients was
68.1 � 8.2 years old, and average waist circumfer-
ence and HbA1c values were 88.6 � 10.1 cm and
6.72 � 0.70%, respectively. Demographic charac-
teristics at baseline are summarized in Table 1. As
shown in Table 1, there were no significant differ-
ences of baseline data between the 2 groups, includ-
ing anthropometric, metabolic, hemodynamic, and
inflammatory variables. Percentages of patients who
were taking oral hypoglycemic agents, antihyperten-
sive medication, statins, or aspirin were similar
between the 2 groups, and doses of the drugs
remained unchanged during the intervention periods.
Effects of pioglitazone and glimepiride on clinical
parameters. The mean titrated daily dose of gli-
mepiride was 1.3 � 1.0 mg and that of pioglitazone
was 16.2 � 4.0 mg. Both treatments were well
tolerated, and there were no drug-related adverse
effects such as heart failure or severe hypoglycemia.
Table 2 shows changes of clinical parameters in each
treatment group. After 16-week treatments, FPG
and HbA1c values were comparably reduced in both
groups. There were no differences of changes in
other clinical parameters except for hsCRP. The
changes of hsCRP values from baseline (DhsCRP)
in the pioglitazone group were significantly larger
than those in glimepiride group (DhsCRP: median:
–0.24 [IQR: –1.58 to –0.04] mg/l vs. 0.08 [IQR:
–0.07 to 0.79] mg/l; p ¼ 0.031).
Effects pioglitazone and glimepiride on FDG-PET and
CT angiography. Figure 3 shows the representative
images of the CT angiography, FDG-PET, and
coregistration of FDG-PET and CT angiography
in patients treated with pioglitazone or glimepiride.
FDG uptakes of the LMT were observed in both
groups (lowest panels of Figs. 3A and 3B and upper
panels of Fig. 3C, baseline). There was no signifi-
cant difference in baseline TBR values between
pioglitazone and glimepiride groups (1.39 � 0.32
vs. 1.45 � 0.29, respectively; p ¼ 0.496) (Fig. 4). As
shown in the lowest panels of Figures 3A and 3B
and lower panels of Figure 3C, post-treatment,
pioglitazone therapy significantly attenuated the
FDG uptake of the LMT, but glimepiride did not.
Pooled data demonstrated that pioglitazone
decreased the TBR values of the LMT (1.39 � 0.32
to 1.26 � 0.29; p ¼ 0.033) (Fig. 4A), whereas
glimepiride did not affect the values (1.45 � 0.29 to
1.54 � 0.35; p ¼ 0.261) (Fig. 4B). The DTBR
values were significantly greater in the pioglitazone
group than in the glimepiride group (–0.12 � 0.06
vs. 0.09 � 0.07; p ¼ 0.032) (Fig. 4C). We also
examined the effects of pioglitazone and glimepiride
on vascular remodeling of LMT, left anterior
descending artery, left circumflex artery, and right
coronary artery by using CT angiography with
16-slice multidetector. Pioglitazone or glimepiride
treatment did not affect vascular remodeling evalu-
ated by vessel diameters or calcification score of each
coronary artery (data not shown).

D I SCUSS ION

In the present study, we found here for the first time
that pioglitazone, but not glimepiride, significantly



Table 2. Changes in Clinical Parameters After 16-Week Treatments With Pioglitazone and Glimepiride

Pioglitazone Glimepiride p Value Between Groups

Weight, kg

Baseline 64.4 � 12.5 65.3 � 10.8 0.794

Post-treatment 65.1 � 13.0 65.8 � 10.4 0.858

p value vs. baseline 0.080 0.153

Waist circumference, cm

Baseline 88.3 � 9.8 89.0 � 10.5 0.806

Post-treatment 89.5 � 9.5 89.4 � 10.0 0.979

p value vs. baseline 0.058 0.484

Systolic blood pressure, mm Hg

Baseline 128.0 � 12.3 123.5 � 13.3 0.239

Post-treatment 124.1 � 14.9 123.7 � 14.1 0.936

p value vs. baseline 0.149 0.907

Diastolic blood pressure, mm Hg

Baseline 70.8 � 9.0 69.0 � 9.3 0.511

Post-treatment 70.4 � 9.8 68.1 � 9.8 0.452

p value vs. baseline 0.819 0.458

LDL cholesterol, mg/dl

Baseline 108.4 � 23.8 117.6 � 24.8 0.210

Post-treatment 106.4 � 27.7 118.1 � 19.8 0.116

p value vs. baseline 0.714 0.903

HDL cholesterol, mg/dl

Baseline 49.9 � 12.8 51.3 � 13.0 0.723

Post-treatment 54.6 � 14.9 53.3 � 12.5 0.755

p value vs. baseline 0.017 0.161

Triglycerides, mg/dl

Baseline 105.0 (79.5–125.5) 120.0 (74.8–164.0) 0.965

Post-treatment 120.0 (80.5–148.5) 119.5 (85.0–207.8) 0.611

p value vs. baseline 0.431 0.153

Fasting plasma glucose, mg/dl

Baseline 121.0 (105.5–140.0) 129.0 (119.5–145.5) 0.249

Post-treatment 110.0 (100.5–120.5) 120.0 (111.8–133.5) 0.004

p value vs. baseline 0.001 0.003

Fasting plasma insulin, mU/ml

Baseline 6.80 (4.55–11.20) 4.85 (3.63–8.45) 0.157

Post-treatment 6.40 (4.20–10.45) 5.70 (4.10–7.53) 0.681

p value vs. baseline 0.144 0.592

Hemoglobin A1c, %

Baseline 6.61 � 0.73 6.85 � 0.64 0.247

Post-treatment 6.15 � 0.42 6.50 � 0.51 0.014

p value vs. baseline <0.001 <0.001

High-sensitivity CRP, mg/l

Baseline 0.78 (0.34–1.93) 0.61 (0.35–1.47) 0.466

Post-treatment 0.53 (0.27–1.15) 0.93 (0.45–2.00) 0.101

p value vs. baseline 0.228 0.018

Values are mean � SD or median (interquartile range).
Abbreviations as in Table 1.
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Figure 3. Representative Cases After Treatment With Pioglitazone or Glimepiride

Effects of pioglitazone and glimepiride on FDG uptake in the LMT. Representative CT angiography (top), FDG-PET (middle), and PET/CT
angiography (bottom) images (transverse, coronal, and sagittal views) at baseline and after 16-week treatment with pioglitazone (A) or
glimepiride (B). Manipulated PET/CT fused images with background subtraction (C). Note reduction in FDG uptake in the LMT with
pioglitazone, but not with glimepiride treatment (arrows). SUV ¼ standardized uptake value; other abbreviations as in Figures 1 and 2.
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Figure 4. Changes in Coronary TBR Values After 16-Week Treatment With Pioglitazone or Glimepiride

Target-to-background ratio (TBR) was evaluated in individual patients at baseline and after 16-week treatments with pioglitazone (A) or
glimepiride (B) for quantitative analysis. (C) Changes in TBR from baseline. Bar shows standard error.
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decreased LMT inflammation evaluated by
FDG-PET and CT angiography in atherosclerotic
patients with IGT or type 2 DM. We used carotid
atherosclerosis as an entry criterion because we would
like to compare the effects of each oral hypoglycemic
agent on LMT inflammation in high-risk subjects.
As there were no significant differences of glucose
control between the 2 groups, pioglitazone may have
exerted anti-inflammatory effects on the LMT in a
glucose-lowering–independent manner. Compared
with glimepiride, pioglitazone has been shown to
prevent recurrentmyocardial infarction in type 2DM
patients with previous myocardial infarction (22).
Given the accumulating evidence that inflammatory
reactions in the vessels play a central role in the
pathogenesis of vulnerable atherosclerotic plaques
and thus contribute to acute coronary syndrome
(30–32), our present study suggests that pioglitazone
may reduce cardiovascular events in patients with
type 2 DM or IGT by suppressing the inflammatory
reactions in the coronary artery.

In the present study, for the quantitative analysis
of vascular inflammation, we measured TBR values
of the LMT by FDG-PET. We limited the ana-
lyses for LMT (Fig. 2), because FDG uptake of the
other portions of the coronary artery is subject to
error due to interference by the myocardial FDG
uptake and motion of the coronary artery (26). In
order to obtain better visualization of FDG
accumulation of the LMT, we made the following
efforts. First, FDG-PET image was acquired after
at least 12-h fasting for minimizing the myocardial
FDG uptake. Second, because perfect coregistra-
tion of chest structures between the PET and CT
images is not feasible because of cardiac and res-
piratory motion that can potentially swamp FDG
signal in coronary arteries, we used a strategy of
prioritizing the registration of the ascending aorta
given that it is discernable on both PET and CT
image for reproducible evaluation (27). As a result,
although there was a lack of respiratory and car-
diac motion correction for PET analysis, process
of observer-dependent image fusion and serial
FDG-PET imaging of the LMT inflammation
studied here obtained highly reproducible results.
It was reported that TBR values (TBR $2.0) of
the culprit lesion were significantly higher in pa-
tients with recent acute coronary syndrome than
those in patients with stable angina (TBR around
1.6) (27,28). Thus, the relatively low baseline
TBR values (1.42 � 0.31) in our asymptomatic
subjects with atherosclerosis further validated
the evaluation of the LMT inflammation by
FDG-PET.
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In our patients, hsCRP was not very elevated.
Nevertheless, pioglitazone treatment significantly
decreased hsCRP, whereas an equipotent glucose-
lowering agent, glimepiride, had a tendency to in-
crease hsCRP, and there was significant difference
in DhsCRP between the 2 groups. These observa-
tions suggest that pioglitazone may attenuate
the LMT inflammation by suppressing systemic
inflammation in our subjects. However, in the
present study, DhsCRP was not significantly
correlated with DTBR values in pioglitazone-
treated patients (r ¼ 0.223, p ¼ 0.307), whose re-
sults were consistent with our previous observations
showing that hsCRP was not associated with
vascular inflammation of the carotid arteries evalu-
ated by FDG-PET (33). Therefore, regulation by
pioglitazone of systemic and local inflammation in
the LMT may differ, and pioglitazone could directly
attenuate the vascular inflammation by inhibiting
macrophage activity within the atherosclerotic area.
Carotid FDG activity was strongly correlated with
macrophage infiltration in the carotid artery speci-
mens of patients (11,12). Pioglitazone has been
shown to not only suppress inflammation in murine
carotid atherosclerosis by inhibiting macrophage
activation (34), but also to inhibit in-stent restenosis
in rabbits by reducing the release of monocyte
chemoattractant protein-1 (35). These findings
further support the concept that suppression of
macrophage activation and infiltration in the coro-
nary arteries may be a molecular target of pioglita-
zone, by which it could attenuate the LMT
inflammation in our patients.
We have previously found that pioglitazone

significantly decreases TBR values of carotid ar-
teries and ascending aortas of the aortic arch,
whose changes were inversely associated with
those in plasma high-density lipoprotein choles-
terol levels (16). However, in this study, DTBR of
the LMT in pioglitazone group were not associ-
ated with differences in high-density lipoprotein
cholesterol values. The finding may be related to
relatively small numbers of patients. However, the
differences of patients’ characteristics and target
vessels (carotid arteries and aortas vs. LMT)
between the 2 studies might account for the
discrepant results. Recently, it has been reported
that markers of atherosclerotic burden at coronary
and carotid arteries were not correlated with each
other and were distinctly associated with pro-
inflammatory cytokines (36). These findings
suggest that vascular inflammation in carotid ar-
teries and LMT may be differently regulated by
pioglitazone.
Study limitations. The small sample size and various
comedications may limit and confound the present
findings. In the present study, some subjects were
enrolled in our previous study (16). However,
because baseline LMT TBR values in the pioglita-
zone versus the glimepiride group (1.39 � 0.32 vs.
1.45 � 0.29) were almost equal to carotid TBR
values of our previous study (1.40 � 0.29 vs. 1.28 �
0.27) (16), it was unlikely that the present study
may be underpowered for coronary PET analysis.
Further, although the PERISCOPE trial, using
coronary intravascular ultrasonography, demon-
strated that pioglitazone, but not glimepiride,
treatment for 18 months prevented atherosclerotic
plaque progression of coronary arteries (24), CT
angiography showed here that pioglitazone or gli-
mepiride treatment for 16 weeks did not affect
coronary artery remodeling evaluated by vessel di-
ameters or calcification score. Therefore, a longitu-
dinal study will be needed to address whether plaque
inflammation in the LMT evaluated by FDG-PET
could be a biomarker to predict atherosclerotic
plaque progression and future cardiovascular events
in patients with IGT or type 2 DM. Moreover,
development of novel PET tracers would provide
more specific information for detecting the inflam-
mation in coronary arteries in humans indepen-
dently of myocardial glucose uptake.
CONCLUS IONS

Our present study demonstrated that pioglitazone
attenuated the LMT inflammation in patients with
IGT or type 2 DM in a glucose-lowering–inde-
pendent manner. Pioglitazone may be a promising
strategy for the treatment of high-risk patients,
especially subjects with vulnerable atherosclerotic
plaques in the coronary arteries.
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