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Abstract  

Wistar-Kyoto (WKY) rats are sensitive to chronic stressors and exhibit depression-like 

behavior. Dorsal raphe nucleus (DRN) serotonin (5-HT) neurons projecting to the prefrontal 

cortex (PFC) comprise the important neurocircuitry underlying the pathophysiology of 

depression. To evaluate the DRN-PFC 5-HT system in WKY rats, we examined the effects 

of escitalopram (ESCIT) on the extracellular 5-HT level in comparison with Wistar rats using 

dual-probe microdialysis. The basal levels of 5-HT in the DRN, but not in the PFC, in WKY 

rats was reduced as low as 30% of Wistar rats. Responses of 5-HT in the DRN and PFC to 

ESCIT administered systemically and locally were attenuated in WKY rats. Feedback 

inhibition of DRN 5-HT release induced by ESCIT into the PFC was also attenuated in WKY 

rats. Chronic ESCIT induced upregulation of the DRN-PFC 5-HT system in WKY rats, with 

increases in basal 5-HT in the DRN, responsiveness to ESCIT in the DRN and PFC, and 

feedback inhibition, whereas downregulation of these effects was induced in Wistar rats. 

Thus, the WKY rat is an animal model of depression with low activity of the DRN-PFC 5HT 

system. The finding that chronic ESCIT upregulates the 5-HT system in hyposerotonergic 

WKY rats may contribute to improved understanding of mechanisms of action of 

antidepressants, especially in depression with 5-HT deficiency. 
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1. Introduction 

Dysfunction of serotonin (5-HT) neurotransmission is a common hallmark in major depression 

and the 5-HT system is a therapeutic target of antidepressants (Hirschfeld, 2000). Dorsal raphe 

nucleus (DRN) 5-HT neurons projecting to the prefrontal cortex (PFC) comprise the important 

neurocircuitry underlying the pathophysiology of depression (Azmitia, 1999). Selective 5-HT 

reuptake inhibitors (SSRIs), which are widely used as antidepressants, rapidly increase 

extracellular 5-HT levels in the DRN and PFC, but show a delay in therapeutic onset for a few 

weeks. Chronic administration of SSRIs reduces the sensitivity of 5-HT autoreceptors and 

enhances 5-HT neurotransmission (Artigas et al., 1996; Blier, 2001; Gardier et al., 1996; Rausch 

et al., 2006). Such neural adaptation of the DRN-PFC 5-HT system may mediate the clinical 

effects of antidepressants. 

Wistar-Kyoto (WKY) rats have been proposed as a genetic animal model of depression 

(Overstreet, 2012; Solberg et al., 2004). A number of loci mapped for behavioral despair in WKY 

rats overlap with regions associated by linkage or genome scan analyses with major depression 

and bipolar disorder in humans (Overstreet, 2012; Solberg et al., 2004). WKY rats display 

depression-like behavior in a wide range of behavioral paradigms (Malkesman and Weller, 2009; 

Paré, 1989; Tejani-Butt et al., 2003), including reduced exploration in the open-field test (Paré, 

1989) and decreased struggling and increased immobility in the forced swim test (Lahmame 

et al., 1997) (Rittenhouse et al., 2002), in comparison with Sprague-Dawley (SD) and Wistar 

rats. 

Altered behavioral responses to SSRIs (Lahmame and Armario, 1996; Tejani-Butt et al., 2003) 

and differential regulation of 5-HT transporter sites in the cortex in response to chronic stressors 

(Paré and Tejani-Butt, 1996) suggest dysfunction of the 5-HT system in WKY rats. 

Electrophysiological studies have revealed decreased excitability of DRN 5-HT neurons in these 

rats (Lemos et al., 2011) and low tissue contents of 5-HT in the DRN, but not in the medial PFC, 

are found in WKY rats compared with SD rats (Scholl et al., 2010). The decreased expression of 

tryptophan hydroxylase 2 (TPH2) mRNA in DRN 5-HT neurons of WKY rats (Lemos et al., 2011) 

supports the idea that synthesis and release of 5-HT in the DRN are low in these rats. Consistent 

with this, polymorphisms in the TPH2 gene that result in reduction of 5-HT synthesis are 

associated with depression in various human populations (Jacobsen et al., 2012). Among TPH2 

variants, the TPH2 Arg439His knock-in mouse exhibits depression-like behavior related to 5-HT 

deficiency (Jacobsen et al., 2012). 

We hypothesized that the genetic background of WKY rats is associated with dysfunction of the 

javascript:void(0);
javascript:void(0);
javascript:void(0);
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib12
javascript:void(0);
javascript:void(0);
javascript:void(0);
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib3
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib2
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib5
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib11
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib31
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib31
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib25
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib39
javascript:void(0);
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib25
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib39
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib54
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib26
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib42
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib26
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib26
javascript:void(0);
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib18
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib18
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib32
javascript:void(0);
javascript:void(0);
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib17
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib42
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib27
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib19
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib36
javascript:void(0);
javascript:void(0);
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib19
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib13
javascript:void(0);
http://www.sciencedirect.com/science/article/pii/S0028390813001901#bib13


DRN-PFC 5-HT system, resulting in expression of depression-like behavior. To characterize the 

DRN-PFC 5-HT system and its responses to acute and chronic SSRIs in WKY rats, the 

extracellular 5-HT levels in the DRN and PFC of WKY rats were measured using dual-probe 

microdialysis under naïve conditions and after chronic treatment with the most selective SSRI, 

escitalopram (ESCIT) (Kennedy et al., 2009). Our results show low activity of the DRN-PFC 

5-HT system and upregulation of the 5-HT system with chronic ESCIT in WKY rats, opposite to 

the downregulation response in Wistar rats. 

 

2. Materials and methods 

2.1. Animals 

Male Wistar (280–340 g, Kyudo, Tosu, Japan) and WKY (280–320 g, SLC, Japan) rats were 

housed at 23 ± 2 °C under a 12-h light–dark cycle with free access to food and water. All rats 

were handled in accordance with the Guide for the Care and Use of Laboratory Animals, as 

adopted and promulgated by the U.S. National Institutes of Health. Specific protocols were 

approved by the Committee for Animal Experimentation, Kurume University School of Medicine. 

All efforts were made to minimize animal suffering and to reduce the number of animals used. 

2.2. Drugs 

Escitalopram oxalate (generously provided by H. Lundbeck A/S, Copenhagen, Denmark) was 

dissolved in saline (0.2 ml) and Ringer's solution for systemic injection and local application, 

respectively. 

2.3. Experimental set-up 

Rats in each strain were divided into three experimental groups; naïve (untreated), chronic 

vehicle-treated and chronic ESCIT-treated groups. In chronic vehicle- and ESCIT-treated groups, 

rats were treated with saline (0.2 mL) and ESCIT (5 mg/kg s.c.) once daily for 14 days, 

respectively. Experiments were conducted 48 h after the last injection 
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In the microdialysis experiments, Wistar and WKY rats in three experimental groups received a 

systemic injection of ESCIT (5 mg/kg in 0.2 mL saline s.c.) or local infusion of ESCIT (0.1 or 

1.0 μM in Ringer's solution) into the DRN and PFC by retrograde microdialysis, in which ESCIT 

was added to the perfusion fluid of Ringer's solution at these concentrations. The tissue 

concentration provided by proper in vivo calibration procedures (Stahle, 1991), was shown 

approximately 10–20% (Bundgarrd, 2007). 

2.4. Surgery and brain dialysis 

Microdialysis was performed with an I-shaped cannula. Microdialysis probes were implanted in 

the unilateral PFC (exposed length 5.0 mm) and the ipsilateral DRN (exposed length 1.5 mm) for 

dual-probe microdialysis under pentobarbital (50 mg/kg i.p.) and xylazine (8 mg/kg i.p.) 

anesthesia and local application of 10% lidocaine. The coordinates of the implantation were A/P 

3.2 mm, L/M 2.4 mm, V/D −5.0 mm from the bregma and dura for the PFC and A/P −7.8 mm, 

L/M 4.0 mm, V/D −7.4 mm at an angle of 34° in the sagittal plane for the DRN. After surgery, the 

rats were housed individually in plastic cages (30 × 30 × 40 cm). 

Microdialysis experiments were conducted 24 h after implantation of the probe, as previously 

described (Kawahara et al., 2007). An on-line approach for real-time quantification of 5-HT was 

used, in which the probes were perfused with Ringer's solution at a flow rate of 2.0 μl/min. The 

15-min sample fractions collected through dialysis probes were directly injected to 

high-performance liquid chromatography using a reverse-phase column (100 ×  2.1 mm; 

BetaBasic-18, Thermo, Waltham, MA, USA) with electrochemical detection. An EICOM EP-300 

pump (Kyoto, Japan) was used in conjunction with an electrochemical detector (ESA; potential 

first cell, +230 mV; potential second cell, +50 mV). The mobile phase was a mixture of 4.1 g/l 

sodium acetate, 100 mg/l Na2EDTA, 30 mg/l octanesulfonic acid, 30 μl/l triethylamine, and 7% 

v/v methanol, pH 4.65. The flow rate was 1.0 ml/min. The detection limit of assay was about 

0.3 fmol per sample (on-column). The composition of the Ringer's solution (in mM) was: NaCl 

140.0, KCl 3.0, CaCl2 1.2, MgCl2 1.0 for the DRN and NaCl 147.0, KCl 4.0, CaCl2 3.4 for the PFC. 

Ringer's solution with high Ca2+ was used to recover dialysate containing detectable 

concentrations of 5-HT from the PFC. At the end of the experiments, the rats were given an 

overdose of chloral hydrate and brains were fixed with 4% paraformaldehyde via intracardiac 

infusion. Sagittal sections (50 μm) were cut and dialysis probe placement was localized using the 

atlas of Paxinos and Watson (2007) (Supplementary Fig. 1). Rats, in which dialysis probes were 

misplaced, were not included in data analysis. 
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2.5. Forced swim test (FST) 

The method of Porsolt et al. (1977) with modification by Malkesman et al. (2006) was used to 

assess the immobility of rats as a measure of their helplessness or depressive-like behavior. 

After 26–27 h of isolation, rats were placed individually in a round Pyrex cylinder pool measuring 

28.0 cm in diameter and 45.5 cm in height for 5 min. The cylinder was filled with 30 cm of water 

(34 ± 1 °C) to ensure that animals could not touch the bottom of the container with their hind 

paws or tails, as described in previous studies using putative genetic rat models of depression, 

WKY and FSL (Malkesman et al., 2006, 2008). It should be noted that the water temperature is 

different from standard protocols (Slattery and Cryan, 2012). Fresh water was used for each FST 

in every animal. Immobility was defined as no additional activity other than that required to keep 

the head above water. Most behavioral tests assessing the antidepressant effects of drugs use a 

model in which rats undergo a 15 min pretest 18–24 h before the actual test (Porsolt et al., 1977; 

Overstreet et al., 2005). However, WKY rats and other genetically selected models of depression 

(e.g. Flinders sensitive line (FSL) and Fawn-Hooded rats) have the advantage of exhibiting 

depressive-like characteristics without the need for a pretest (Overstreet et al., 2005; Tizabi et al., 

1999, Tizabi et al., 2000 and Tizabi et al., 2009). 

2.6. Measurement of locomotor activity 

The number of horizontal and vertical (or rearing) movements was determined as activity counts 

using an infrared sensor (NS-AS01; Neuroscience, Japan) for 24 h. 

2.7. Sucrose preference test 

The sucrose preference test is a measure of the hedonic state of an animal or the ability to 

experience pleasure (De la Garza, 2005; Kalueff et al., 2006; Jones et al., 2008). Impairment in 

this test is a fundamental feature of clinical depression (American Psychiatric Association, 2000). 

The animals were tested for 4 days, with a free choice between two bottles, one with 1% sucrose 

in tap water and the other with tap water alone. To eliminate potential side preferences, the 

positions of the bottles were switched after 2 days. Consumption of water, sucrose solution and 

total liquid intake (ml) was assessed daily for 4 days. The preference for sucrose was calculated 

as a percentage of the consumed sucrose solution out of the total volume of consumed liquid. 
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2.8. Novelty-suppressed feeding test (NSFT) 

The NSFT was performed as previously described (Bodnoff et al., 1988; Santarelli and Saxe, 

2003; Zhang et al., 2010) with modifications. Briefly, the test was conducted in an open field box 

measured 55 × 45 × 40 cm3. All food was removed from the home cage 24 h before the test. A 

single pellet of food was placed on a white round paper (diameter = 6.25 cm) in the center of the 

open field box. During the test, the rat was put at the corner of the test box for 5 min to measure 

the latency to bite the food pellets. The rat was then put back in its cage with food. The amount of 

food that the rat ate during the next 5-min period was measured. 

2.9. Statistical analysis 

All values are expressed as a percentage of the average of three baseline samples. The average 

concentration of three stable baseline samples was set at 100%. Repeated measures one-way 

analysis of variance (ANOVA) and a Dunnett multiple comparison test for post-hoc determination 

were performed using the SAS mixed procedure (SAS Institute, Cary, N.C., USA). One-way 

ANOVA and a Scheffe multiple comparison test for post-hoc determination were used for 

comparison of naïve experimental groups. Repeated measures two-way ANOVA and a 

Bonferroni multiple comparison test for post-hoc determination were used for comparison 

between experimental groups (GraphPad Prism, GraphPad Software, San Diego, CA, USA). 

The level of significance was set at p < 0.05. Details of statistical data are listed in 

Supplementary Table 1. 

3. Results 

3.1. Depression- and anxiety-like behaviors with or without repeated ESCIT treatment 

3.1.1. FST in naïve rats 

Immobility in the forced swim test was analyzed to examine depression-like behavior. WKY rats 

showed a markedly longer duration of immobility in comparison with Wistar rats (Fig. 1A). 

Locomotor activities assessed throughout the 12-h light/dark cycle were similar in Wistar and 
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WKY rats for both light and dark cycles (Supplementary Fig. 2), suggesting that the longer 

duration of immobility in WKY rats is not due to a difference in basal motor activity between the 

two strains. 

 

 

Fig. 1.  

Depression- and anxiety-related behaviors in Wistar and WKY rats. Immobility time in the forced swim test (A), 

latency to feed in the novelty-suppressed feeding test (B), and sucrose solution consumption (% of total liquid 
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consumption) in the sucrose preference test (C) in naïve rats and rats treated with vehicle (Veh; saline 

0.2 ml s.c.) or escitalopram (ESCIT; 5 mg/kg s.c.) for 14 days. Data are expressed as mean ± S.E.M. (n = 10 

rats in each group). *p < 0.05, **p < 0.01 vs. naïve Wistar; ##p < 0.01 vs. corresponding Wistar; †p < 0.05 vs. 

vehicle-treated Wistar; ††p < 0.01 vs. vehicle-treated WKY. 

3.1.2. FST in ESCIT or vehicle-treated rats 

To examine the effects of repeated ESCIT treatment, rats received vehicle (saline; 0.2 ml s.c.) or 

ESCIT (5 mg/kg/day s.c.) for 14 days. Repeated treatment with vehicle did not affect immobility 

in each strain. Repeated treatment with ESCIT significantly reduced the duration of immobility in 

WKY rats, but had no effect in Wistar rats. 

3.1.3. NFST in naïve rats 

Latency to feed in a novel environment in the NSFT gives an indication of anxiety levels and was 

significantly longer in WKY rats compared with Wistar rats (Fig. 1B). 

3.1.4. NSFT in ESCIT or vehicle-treated rats 

Vehicle-treated Wistar and WKY rats showed a similar latency to naïve rats in each strain. 

Repeated treatment with ESCIT increased the latency to feed in Wistar rats, but not in WKY rats. 

3.1.5. Sucrose preference test in naïve rats 

The sucrose preference test for anhedonia assesses loss of appetitive motivation, which is a 

core symptom of depression. The sucrose preference (% of total liquid consumption) determined 

over 4 consecutive days was similar in Wistar and WKY rats (Fig. 1C). However, WKY rats had 

significantly lower food and water intakes (Supplementary Fig. 3A–D) and sucrose consumption 

(data not shown) compared to Wistar rats. In microdialysis experiments, Wistar rats at 9 weeks 

of age and WKY rats at 11 weeks of age were used, because the brain coordinates of the DRN 

and PFC were anatomically similar across the strains when body weights were matched (Wistar 

309.44 ± 4.67 g; WKY 303.71 ± 2.72 g) (Supplementary Fig. 1) and 5-HT system in Wistar rats 

was found to be similar during aging from 9 to 11 weeks (Supplementary Fig. 3E, F). However, 
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the possible impact of different ages, such as difference of neuronal development or 5-HT 

system, cannot be completely ruled out. 

3.1.6. Sucrose preference test in ESCIT or vehicle-treated rats 

Vehicle-treated Wistar and WKY rats showed similar sucrose preference to naïve rats in each 

strain. Repeated treatment with ESCIT had no effect in either strain. 

3.2. Extracellular 5-HT levels with or without repeated ESCIT treatment 

The basal levels of 5-HT in the DRN and PFC were determined by microdialysis in Wistar and 

WKY rats (Fig. 2). 

 

 

Fig. 2.  

Extracellular 5-HT contents in dialysates from the DRN (A) and PFC (B) in Wistar and WKY rats. Basal values 

of extracellular 5-HT were determined by microdialysis in naïve rats and rats treated with vehicle (Veh) or 

ESCIT for 14 days. Data are expressed as mean ± S.E.M. (number of rats shown in parentheses). **p < 0.01 

vs. naïve Wistar; ##p < 0.001 vs. vehicle-treated Wistar; ††p < 0.01 vs. vehicle-treated Wistar; †p < 0.05 vs. 

vehicle-treated WKY 
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3.2.1. Naïve rats 

Basal 5-HT was significantly lower in WKY rats than in Wistar rats in the DRN (3.93 ± 0.77 vs. 

14.16 ± 2.80 fmol/sample) and slightly (but not significantly) lower in the PFC (2.12 ± 0.36 vs. 

3.02 ± 0.57 fmol/sample). 

3.2.2. ESCIT or vehicle-treated rats 

Vehicle treatment did not affect 5-HT in the DRN or PFC in either strain. In the DRN, repeated 

treatment with ESCIT decreased the 5-HT level in Wistar rats, but increased this level in WKY 

rats. In the PFC of vehicle and ESCIT-treated rats, 5-HT in WKY rats was slightly lower than that 

in Wistar rats (strain effect, p < 0.05) and ESCIT treatment had a significant effect (treatment 

effect, p < 0.05). 

3.3. Effects of systemic administration of ESCIT on 5-HT levels 

3.3.1. Naïve rats 

Systemic administration of ESCIT (5 mg/kg s.c.) induced increases in 5-HT levels in the DRN 

(Fig. 3A) and PFC (Fig. 3B) in Wistar and WKY rats, but the increases in the DRN and PFC were 

both smaller in WKY rats. 
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Fig. 3.  

Effects of systemic ESCIT administration (5 mg/kg s.c.) on 5-HT in dialysates from the DRN and PFC in Wistar 

and WKY rats. (A, B) 5-HT contents in the DRN (A) and PFC (B) in naïve Wistar (black open circles) and WKY 

(blue open squares) rats. (C, D) 5-HT contents in the DRN (C) and PFC (D) in Wistar rats treated with vehicle 

(open circles) or ESCIT (closed circles). (E, F) 5-HT contents in the DRN (E) and PFC (F) in WKY rats treated 

with vehicle (blue open squares) or ESCIT (blue closed squares). All values are calculated as a percentage of 

basal values within the same group. Data are expressed as mean ± S.E.M. (n = 5 rats in each group). 

*p < 0.05, **p < 0.01 vs. basal values; #p < 0.05, ##p < 0.001 vs. naïve Wistar (A, B), vehicle-treated Wistar 

(C, D), or vehicle-treated WKY (E, F). (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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3.3.2. ESCIT or vehicle-treated rats 

In the DRN, repeated treatment with ESCIT did not affect the relative increases in 5-HT (% of 

basal value in each experimental group) in response to systemic administration of ESCIT 

(5 mg/kg s.c.) in Wistar (Fig. 3C) or WKY (Fig. 3E) rats. Since the basal levels of 5-HT in the 

DRN in naïve (and vehicle-treated) Wistar (100%) and WKY (30% of naïve Wistar) rats were 

changed by repeated ESCIT treatment to 35% and 45% of those in naïve Wistar rats, 

respectively, the effects of systemic ESCIT administration were re-evaluated by normalizing to 

the 5-HT levels to naïve Wistar rats (100% control) (Supplementary Fig. 5A). This re-evaluation 

showed that the responses of 5-HT in the DRN to systemic ESCIT administration in WKY rats 

are similar to those in Wistar rats after repeated treatment with ESCIT. 

In the PFC, repeated ESCIT treatment largely attenuated the increase in the 5-HT level induced 

by systemic ESCIT administration in Wistar rats (Fig. 3D). In contrast, in WKY rats, 

ESCIT-induced increase in 5-HT was enhanced (Fig. 3F). Since the basal levels of 5-HT in the 

PFC were relatively constant with or without repeated ESCIT treatment in both strains, the 

responses of 5-HT in the PFC to systemic ESCIT become comparable in Wistar and WKY rats 

after repeated ESCIT (Supplementary Fig. 5B). 

3.4. Effects of local infusion of ESCIT into the DRN on 5-HT levels 

3.4.1. Naïve rats 

Local infusion of ESCIT at concentrations of 0.1 μM (Fig. 4A) and 1 μM (Supplementary Fig. 4A) 

into the DRN caused similar relative increases in 5-HT in the DRN in Wistar and WKY rats. In 

Wistar rats, local infusion of ESCIT in the DRN simultaneously decreased 5-HT in the PFC 

(Fig. 4B, Supplementary Fig. 4B). The decreases in 5-HT in the PFC were similar in Wistar and 

WKY rats. These results indicate that 5-HT release in the PFC in Wistar rats is regulated by 

serotonergic autoinhibition of DRN neurons (Sharp et al., 2007; Aso et al., 2009) and that this 

mechanism is functional in WKY rats. 
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Fig. 4.  

Effects of local infusion of ESCIT (0.1 μM) into the DRN on 5-HT in dialysates from the DRN and PFC in Wistar 

and WKY rats. (A, B) 5-HT contents in the DRN (A) and PFC (B) in naïve Wistar (black open circles) and WKY 

(blue open squares) rats. (C, D) 5-HT contents in the DRN (C) and PFC (D) in Wistar rats treated with vehicle 

(open circles) or ESCIT (closed circles). (E, F) 5-HT contents in the DRN (E) and PFC (F) in WKY rats treated 

with vehicle (blue open squares) or ESCIT (blue closed squares). All values are calculated as a percentage of 

basal values within the same group. Data are expressed as mean ± S.E.M (n = 4 rats in each naïve group (A, 

B), n = 5 in each treated group (C–F)). *p < 0.05, **p < 0.01 vs. basal values. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

http://www.sciencedirect.com/science/article/pii/S0028390813001901


3.4.2. ESCIT or vehicle-treated rats 

In the DRN, repeated treatment with ESCIT did not affect the relative increases in 5-HT induced 

by local infusion of ESCIT into the DRN in Wistar (Fig. 4C) or WKY (Fig. 4E) rats. When the 

increases were normalized to the basal 5-HT level in naïve (or vehicle-treated) Wistar rats 

(100%), the increases in absolute 5-HT levels in response to local infusion of ESCIT in WKY rats 

were smaller than those in Wistar rats due to the low basal levels (30% of naïve Wistar rats), but 

became comparable to Wistar rats after repeated ESCIT treatment due to the similar basal levels 

(Supplementary Fig. 5A). 

In the PFC, the decreases in 5-HT caused by local infusion of ESCIT into the DRN were not 

affected by repeated ESCIT treatment in Wistar or WKY rats (Fig. 4D, F). Thus, repeated ESCIT 

treatment did not modulate serotonergic autoinhibition of 5-HT release in the PFC. 

3.5. Effects of local infusion of ESCIT into the PFC on 5-HT levels 

3.5.1. Naïve rats 

Local infusion of ESCIT at concentrations of 0.1 μM (Fig. 5A) and 1 μM (Fig. 5B) into the PFC 

induced larger increases in 5-HT in the PFC in Wistar rats than in WKY rats. In Wistar rats, local 

infusion of ESCIT at 0.1 and 1 μM into the PFC simultaneously decreased the 5-HT level in the 

DRN (Fig. 5C, D). In WKY rats, ESCIT infusion at the high concentration (1 μM), but not at the 

low concentration (0.1 μM), decreased 5-HT in the DRN (Fig. 5K, L). These results suggest that 

the activity of DRN 5-HT neurons and 5-HT release are regulated by feedback inhibition 

mediated through activation of postsynaptic 5-HT receptors in the PFC (Sharp et al., 2007; 

Celada et al., 2001) and that feedback inhibition of DRN 5-HT neurons is attenuated in WKY 

rats. 
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Fig. 5.  

Effects of local infusion of ESCIT (0.1 and 1.0 μM indicated as gray bars and black bars, respectively) into the 

PFC on 5-HT in dialysates from the PFC and DRN in Wistar and WKY rats. (A–D) 5-HT contents in PFC (A, B) 

and DRN (C, D) in naïve Wistar (black open circles) and WKY (blue open squares) rats. (E–H) 5-HT contents 

in the PFC (E, F) and DRN (G, H) in Wistar rats treated with vehicle (open circles) or ESCIT (closed circles). (I–

L) 5-HT contents in the PFC (I, J) and DRN (K, L) in WKY rats treated with vehicle (blue open squares) or 

ESCIT (blue closed squares). All values are calculated as a percentage of basal values within the same group. 

Data are expressed as mean ± S.E.M (n = 4 rats in each group for (A-D, H, J, L), n = 5 in each group for (G, I, 

K), n = 6 in each group for (E, F)). *p < 0.05, **p < 0.01 vs. basal values; #p < 0.05, ##p < 0.001 vs. naïve 

Wistar (A–C), vehicle-treated Wistar (E–G), or vehicle-treated WKY (J,K). (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

3.5.2. ESCIT or vehicle-treated rats 

Repeated treatment with ESCIT strongly suppressed the relative increases in 5-HT induced by 

local infusion of ESCIT (0.1 and 1 μM) into the PFC in Wistar rats (Fig. 5E, F), but enhanced the 

relative increases induced by local infusion of ESCIT at 1 μM, but not at 0.1 μM, into the PFC in 

WKY rats (Fig. 5I, J). 

Repeated treatment with ESCIT did not affect the decreases in 5-HT in the DRN induced by local 

infusion of ESCIT into the PFC in Wistar rats (Fig. 5G and H), but enhanced the decrease in 
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5-HT induced by ESCIT infusion at the low concentration (0.1 μM) in WKY rats (Fig. 5K). These 

results suggest that repeated ESCIT treatment enhances feedback inhibition of DRN 5-HT 

neurons in WKY rats. 

4. Discussion 

In this study, extracellular 5-HT levels were analyzed simultaneously in two brain regions, the 

DRN and PFC, in WKY and Wistar rats. In the DRN, WKY rats showed a low basal level of 5-HT 

and a small absolute increase in 5-HT in response to ESCIT in the DRN. In the PFC, despite the 

similar basal levels of 5-HT, WKY rats showed small absolute and relative increases in 5-HT in 

response to ESCIT in the PFC. Feedback inhibition of DRN 5-HT neurons by ESCIT in the PFC 

(through postsynaptic 5-HT receptors in the PFC) was also attenuated in WKY rats. After chronic 

treatment with ESCIT, the low basal level of 5-HT in the DRN, the small increases of 5-HT in 

response to ESCIT in the DRN and PFC, and feedback inhibition of DRN 5-HT neurons were 

upregulated in WKY rats (Fig. 6, Supplementary Fig. 5). The effect of chronic ESCIT in WKY rats 

was opposite to that in Wistar rats, in which chronic ESCIT induced downregulation of the 5-HT 

system. The differential adaptation of the DRN-PFC 5-HT system to chronic ESCIT observed in 

WKY rats may play a role in the therapeutic effect of antidepressants on depression-like 

behavior.  

4.1. 5-HT system in the DRN and its response to ESCIT in WKY rats 

WKY rats had a low basal level of extracellular 5-HT in the DRN, in agreement with previous 

reports showing a low tissue content of 5-HT in the DRN of WKY rats compared with SD rats 

(Nguyen et al., 2009; Scholl et al., 2010) and low expression of mRNA for TPH2, a rate-limiting 

enzyme for 5-HT synthesis, in DRN 5-HT neurons (Lemos et al., 2011). The excitability of DRN 

5-HT neurons has also been reported to be decreased in WKY rats (Lemos et al., 2011). These 

findings suggest that TPH2-mediated 5-HT synthesis and release of 5-HT from somata, 

dendrites and axon collaterals of DRN 5-HT neurons are decreased in WKY rats. Interestingly, 

low basal levels of 5-HT in the DRN in adulthood have also been found in two other rat models of 

depression, in which rats receive chronic mild stress or a tricyclic antidepressant (clomipramine) 

in the neonatal period (Yang et al., 2008). 

In comparison with Wistar rats, absolute increases in 5-HT induced by ESCIT in the DRN were 

attenuated in WKY rats due to the low basal level of 5-HT (Supplementary Fig. 5A). However, 
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the relative increase in 5-HT over the basal level in response to ESCIT in WKY rats was similar 

to that in Wistar rats, suggesting that the function of 5-HT transporters, such as the sensitivity of 

the high-affinity 5-HT transporter to ESCIT, may be maintained in WKY rats. Taken together, 

these results indicate that low activity of DRN 5-HT neurons contributes to the pathophysiology 

of depression (Hirschfeld, 2000). 

4.2. 5-HT system in the PFC and its response to ESCIT in WKY rats 

In contrast to the DRN, WKY and Wistar rats had similar basal levels of 5-HT in the PFC. Our 

findings are consistent with previous measurements of tissue 5-HT contents in the PFC (De La 

Garza and Mahoney, 2004; Scholl et al., 2010). However, the increase of 5-HT induced by 

ESCIT in the PFC was extremely low in WKY rats (Supplementary Fig. 5B). The mechanisms 

underlying the low response of 5-HT in the PFC to ESCIT are unknown. It is possible that 5-HT 

turnover at axon terminals is reduced since activity of DRN 5HT neurons is low. Alternatively, 

there may be functional alterations of 5-HT transporters in the PFC, and it is of note that 

decreased densities of 5-HT transporters in the cortex and hippocampus have been reported in 

WKY rats (Paré and Tejani-Butt, 1996). The contributions of 5-HT1A autoreceptors (Ceglia et al., 

2004; Kosofsky and Molliver, 1987) and 5-HT2C receptors, which are involved in regulation of 

extracellular 5-HT in the PFC under SSRI-treated conditions (Cremers et al., 2004; Sotty et al., 

2009), need to be evaluated. 

4.3. Feedback inhibition of DRN 5-HT neurons by postsynaptic 5-HT receptors in the 

PFC 

Intracortical infusion of ESCIT resulted in reduction of extracellular 5-HT in the DRN. The 

findings fit to the model of feedback inhibition of DRN 5-HT neurons by postsynaptic 5-HT 

receptors in the PFC (Sotty et al., 2009). Activation of these receptors on non-5-HT neurons in 

the PFC modulates neural inputs to DRN 5-HT neurons [e.g. stimulation of GABAergic 

interneurons (via 5-HT2A/2C and 5-HT3 receptors) connected to pyramidal neurons (Liu et al., 2007; 

Puig et al., 2004), inhibition of pyramidal neurons (via 5-HT1A receptors) (Yuen et al., 2008), or 

stimulation of pyramidal neurons (via 5-HT2A receptors) connected to GABAergic interneurons in 

the DRN (Sharp et al., 2007)] (Fig. 6), resulting in inhibition of DRN 5-HT neurons and 5-HT 

release (Puig and Gulledge, 2011; Romero et al., 1996). In the present study, feedback inhibition 

of 5-HT release in the DRN was found to be attenuated in WKY rats (Fig. 6). This attenuation 
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may be explained by the small increases of 5-HT in the PFC in response to ESCIT or by 

alteration of postsynaptic 5-HT receptor pathways. Postsynaptic 5-HT receptor-mediated 

feedback inhibition of DRN 5-HT neurons may be a mechanism to control excessive activation of 

DRN 5-HT neurons associated with uncontrollable stress (Amat et al., 2005; Puig and Gulledge, 

2011; Romero et al., 1996), which is consistently reported as defective in WKY rats (Braw et al., 

2008; Jiao et al., 2011). 

Feedback inhibition of DRN 5-HT neurons was enhanced by chronic ESCIT in WKY rats (Fig. 6). 

Since basal 5-HT in the DRN of WKY rats increased after chronic ESCIT, feedback inhibition of 

DRN 5-HT neurons may not have a tonic effect, but may function only when 5-HT in the PFC is 

increased excessively under certain conditions, such as psychological stress and stimulation of 

emotional processes (Miyata et al., 2007; Robbins and Roberts, 2007; Roy et al., 2006). This 

adaptation might be involved in the improvement of stress-controllability in WKY rats (Amat et al., 

2005). 

4.4. Upregulation of 5-HT system by chronic ESCIT in WKY rats and its contribution to 

antidepressant effects 

In WKY rats, the activity of the DRN-PFC 5-HT system was found to be low and chronic ESCIT 

upregulated this system. In contrast, chronic ESCIT downregulated this system in control Wistar 

rats. Thus, an upregulatory effect of chronic ESCIT on the DRN-PFC 5-HT system was observed 

only in the depressed WKY animal model and may have been associated with improvement of 

depressed behavior, such as that observed in the forced swim test. Similar changes of 5-HT in 

the DRN have been found after treatment in other animal models of depression. For example, 

basal 5-HT in the DRN is low in rats with depression after chronic mild stress, and lateral 

habenula lesions increase 5-HT and improve depressive behavior (Yang et al., 2008). These 

findings indicate that upregulation of the 5-HT level in the DRN may underlie the therapeutic 

effects of antidepressants in a depressive state. 

In the depressive state with 5-HT deficiency, chronic treatment with antidepressants including 

SSRIs is generally thought to increase 5-HT levels and induce desensitization of inhibitory 5-HT1A 

autoreceptors (Blier, 2001). This proposed model of antidepressant action fits with the chronic 

ESCIT-induced upregulation in the DRN-PFC 5-HT system in WKY rats. These rats are a genetic 

animal model of depression with a feature of low activity of the DRN-PFC 5-HT system. It is 

conceivable that responses to chronic ESCIT are determined by the tone of DRN 5-HT neurons: 
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upregulation when hypofunctional and downregulation when normofunctional. The 5-HT 

deficiency in human depression is supported with findings of polymorphisms in the TPH2 gene 

that result in reduction of 5-HT synthesis (Jacobsen et al., 2012). Among TPH2 variants, the 

TPH2 Arg439His knock-in mouse exhibits depression-like behavior related to 5-HT deficiency 

(Jacobsen et al., 2012). Identification of adaptive mechanisms to chronic antidepressants in the 

hyposerotonergic/depressive state in WKY rats will be extremely important for development of 

new therapeutic strategies for depression with 5-HT deficiency. 

Emerging preclinical studies of the therapeutic action of antidepressants are using 

‘non-depressed’ animals and/or ‘depressed’ animals, but most do not differentiate between 

these types of animals in interpreting the action of antidepressants. However, the results in the 

current study in WKY and Wistar rats with different serotonergic states show opposite responses 

to chronic ESCIT and suggest the importance of use of the optimal animal model. In this regard, 

the WKY rat is a useful model of depression with low activity of the DRN-PFC 5-HT system. 
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Fig. 6. 

Schematic representation of the DRN-PFC 5-HT system in Wistar (upper left panel) and WKY (lower left panel) 

rats and their adaptation to chronic treatment with ESCIT (right panels). Basal 5-HT release (indicated by blue 

circles) in the DRN (1) and the responses of 5-HT to ESCIT in the DRN (2) and PFC (3) in WKY rats (indicated 

by black rods) are lower than those in Wistar rats. In the PFC, basal 5-HT release and inhibition of 5-HT 

release in the PFC by ESCIT in the DRN [e.g. through inhibition of DRN 5-HT neurons via 5-HT1A autoreceptors 

(Barnes and Sharp, 1999)] are equivalent in the two strains. Feedback inhibition of DRN 5-HT neurons by 

ESCIT in the PFC [e.g. through stimulation of GABAergic interneurons (via 5-HT2A/2C and 5-HT3 receptors) 

connected to pyramidal neurons (Liu et al., 2007; Puig et al., 2004), inhibition of pyramidal neurons (via 5-HT1A 

receptors) (Yuen et al., 2008), or stimulation of pyramidal neurons (via 5-HT2A receptors) connected to 

GABAergic interneurons in the DRN (Sharp et al., 2007)] (4) is attenuated in WKY rats (pink dotted line). 

Chronic ESCIT upregulates basal 5-HT release in the DRN (1), responses of 5-HT to ESCIT in the DRN (2) 

and PFC (3), and feedback inhibition of DRN 5-HT neurons (4) in WKY rats (Liu et al., 2007). In Wistar rats, the 

effects of chronic ESCIT are opposite, inducing downregulation of basal 5-HT release in the DRN (1) and 

responses of 5-HT to ESCIT (2, 3). 

             

5. Conclusion 

The WKY rat is a genetic animal model of depression with dysfunction of the DRN-PFC 5-HT 

system, which resembles a type of human depression with 5-HT deficiency (Jacobsen et al., 

2012). In this study in WKY rats, we showed that chronic treatment with an antidepressant 

upregulated the DRN-PFC 5-HT system, which had low activity before treatment, and that this 

upregulation was dependent on the hyposerotonergic state. These results indicate that 

elucidation of the mechanisms through which antidepressants regulate the 5-HT system in WKY 

rats is critical for understanding the action of antidepressants. 
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Supplementary Fig. 1. Representative coronal diagrams of microdialysis probe placements 

for DRN (A) and PFC (B). Blue lines indicate dialysis probe tracks from Wistar and WKY rats, 

if more than one probe was located in the same place only one representative line is 

depicted. Since there was no regional difference of the DRN and PFC between Wistar and 

WKY, dialysis probe tracks from both strains were indicated together in the same coronal 

section of Wistar. Distance relative to bregma (mm) is -7.8 (A) and 3.2 (B). Figures are 

adapted from Paxinos and Watson (2007). In all the experiments, the microdialysis probe 

covered the DRN and PFC. 

 

Supplementary Fig. 2. Locomotor activities during a dark and light cycle (12h/12h) in naïve 

Wistar and WKY rats. Data are expressed as mean ± S.E.M (n=8 rats in each strain). 



 

Supplementary Fig. 3. (A, B) Food (A) and water (B) intakes for 24 h in naïve Wistar and WKY 

rats from 8 to 11 weeks of age. Data are expressed as means ± S.E.M. (n=10 rats for each 

strain). **p< 0.01 vs. Wistar group at corresponding ages; ## p<0.001 vs. Wistar group at 9 

weeks of age, as indicated with closed circles. (C) Food intake was recorded for the light (L) and 

dark (D) cycle (12h/12h) and total (T) in Wistar rats at 9 weeks of age (black bars) and WKY rats 

at 11 weeks of age (blue bars). Rats were untreated (naïve) or treated with vehicle (Veh) or 

ESCIT for 14 days. Data are expressed as mean ± S.E.M. (n=10 rats in each group). **p< 0.01 

vs. naïve Wistar rats at corresponding phases; ## p< 0.001 vs. Wistar rats treated with vehicle or 

ESCIT at corresponding phases. (D) Water intake was recorded for 4 consecutive days in naïve 

Wistar rats at 9 weeks of age and naïve WKY rats at 11 weeks of age. Data are expressed as 

means ± S.E.M. (n=10 rats in each group). *p< 0.05, **p< 0.01 vs. Wistar rats on corresponding 

days. (E, F) Comparison of serotonergic system in naïve Wistar rats at 9 and 11 weeks of age. 

Basal levels of 5-HT at 9 and 11 weeks of age were similar in the DRN (16.32 ± 5.43 and 17.46 ± 



3.22 fmol/sample) and the PFC (2.45 ± 0.35 and 2.84 ± 1.20 fmol/sample). Effects of local 

infusion of ESCIT (0.1 M) into the PFC on the 5-HT in dialysates from the PFC (E) and DRN (F) 

were similar in Wistar rats at 9 and 11 weeks of age. Data are expressed as means ± SEM (n=4 

rats in each group). *p< 0.05, **p< 0.01 vs. basal value. 

 

Supplementary Fig. 4. Effects of local infusion of ESCIT (1.0 µM) into the DRN on 5-HT in 

dialysates from the DRN (A) and PFC (B) in naïve Wistar (black open circles) and WKY 

(blue open squares) rats. All values are calculated as a percentage of basal values within 

the same group. Data are expressed as mean ± SEM (n=4 rats in each naïve group). *p< 

0.05, **p< 0.01 vs. basal values. 

 



Supplementary Fig. 5.  Overall comparison of the maximum effects of ESCIT 

administered systemically or locally into the DRN and PFC on 5-HT levels in the DRN (A) 

and PFC (B) of Wistar and WKY rats. The relative increases in 5-HT over basal in each 

condition were recalculated by setting the basal level of 5-HT in naïve Wistar rats as 100%. 

Left panels: 5-HT levels in naïve Wistar and WKY rats, which are essentially identical to 

5-HT levels in vehicle-treated Wistar and WKY rats. Right panels: 5-HT levels in 

ESCIT-treated Wistar and WKY rats. Left Y-axis shows the percentage of basal values in 

naïve Wistar rats, and right Y-axis shows the percentage of basal values in ESCIT-treated 

Wistar rats. 
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Set of data Type of ANOVA F p

Figure 1

A

strain-treatment interaction Two-way F(1,36)=18.68 0.0001

strain effect Two-way F(1,36)=176.8 <0.0001

treatment effect Two-way F(1,36)=20.97 <0.0001

naïve: Wistar, WKY t-test <0.0001

B

strain-treatment interaction Two-way F(1,36)=2.527 0.1207

strain effect Two-way F(1,36)=22.98 <0.0001

treatment effect Two-way F(1,36)=1.527 0.2246

naïve: Wistar, WKY t-test 0.0008

 
C

Wistar naïve vs. WKY naïve

strain-treatment interaction Two-way F(3,72)=1.093 0.3579

strain effect Two-way F(1,72)=0.03828 0.8454

day effect Two-way F(3,72)=4.583 0.0054

Wistar vehicle vs. Wistar ESCIT

strain-treatment interaction Two-way F(3,72)=0.3130 0.8159

strain effect Two-way F(1,72)=0.09840 0.7547

day effect Two-way F(3,72)=0.1413 0.9349

WKY vehicle vs. WKY ESCIT

strain-treatment interaction Two-way F(3,72)=0.5457 0.6526

strain effect Two-way F(1,72)=1.057 0.3075

day effect Two-way F(3,72)=4.363 0.007

Wistar naïve vs. Wistar vehicle

strain-treatment interaction Two-way F(3,72)=0.5655 0.6395

strain effect Two-way F(1,72)=1.337 0.2514

day effect Two-way F(3,72)=0.5614 0.6422

WKY naïve vs. WKY vehicle

strain-treatment interaction Two-way F(3,72)=0.1749 0.913

strain effect Two-way F(1,72)=0.4547 0.5023

day effect Two-way F(3,72)=4.077 0.0099

Figure 2

A

strain-treatment interaction Two-way F(1,48)=18.35 <0.0001

strain effect Two-way F(1,48)=113.75 0.0005

treatment effect Two-way F(1,48)=12.685 0.1079

Naïve: Wistar, WKY t-test 0.0008

B

strain-treatment interaction Two-way F(1,56)=0.1124 0.7387

strain effect Two-way F(1,56)=5.565 0.0218

treatment effect Two-way F(1,56)=4.984 0.0296

Naïve: Wistar, WKY t-test 0.1779



Figure 3. Escitalopram s.c.

A

Wistar naïve One-way F(12,52)=9.311 <0.0001

WKY naïve One-way F(12,52)=8.065 <0.0001

strain-time interaction Two-way F(11,48)=2.150 0.0341

strain effect Two-way F(1,48)=45.34 <0.0001

time effect Two-way F(11,48)=11.97 <0.0001

B

Wistar naïve One-way F(12,52)=9.738 <0.0001

WKY naïve One-way F(12,52)=8.128 <0.0001

strain-time interaction Two-way F(11,48)=6.614 <0.0001

strain effect Two-way F(1,48)=69.42 <0.0001

time effect Two-way F(11,48)=10.31 <0.0001

C

Wistar ESCIT One-way F(12,52)=4.419 <0.0001

Wistar Vehicle One-way F(12,52)=14.573 <0.0001

strain-time interaction Two-way F(11,48)=0.3077 0.9809

strain effect Two-way F(1,48)=0.1911 0.664

time effect Two-way F(11,48)=37.21 <0.0001

D

Wistar ESCIT One-way F(12,52)=5.134 <0.0001

Wistar vehicle One-way F(12,52)=14.015 <0.0001

strain-time interaction Two-way F(11,48)=5.912 <0.0001

strain effect Two-way F(1,48)=129.7 <0.0001

time effect Two-way F(11,48)=19.91 <0.0001

E

WKY ESCIT One-way F(12,52)=4.173 0.0001

WKY vehicle One-way F(12,52)=3.266 0.001

strain-time interaction Two-way F(11,48)=0.1764 0.9982

strain effect Two-way F(1,48)=2.522 0.1188

time effect Two-way F(11,48)=7.221 <0.0001

F

WKY ESCIT One-way F(12,52)=4.510 <0.0001

WKY vehicle One-way F(12,52)=4.122 <0.0001

strain-time interaction Two-way F(11,48)=1.839 0.073

strain effect Two-way F(1,48)=30.08 <0.0001

time effect Two-way F(11,48)=6.459 <0.0001

Figure 4. Escitalopram (0.1) into DRN

A

Wistar naïve One-way F(12,39)=5.525 <0.0001

WKY naïve One-way F(12,39)=2.351 0.215

strain-time interaction Two-way F(11,36)=0.9450 0.5108

strain effect Two-way F(1,36)=9.649 0.0037

time effect Two-way F(11,36)=5.806 <0.0001

B



Wistar naïve One-way F(12,39)=7.055 <0.0001

WKY naïve One-way F(12,39)=7.533 <0.0001

strain-time interaction Two-way F(11,36)=1.006 0.4607

strain effect Two-way F(1,36)=0.3811 0.5409

time effect Two-way F(11,36)=11.21 <0.0001

C

Wistar ESCIT One-way F(12,52)=7.211 <0.0001

Wistar vehicle One-way F(12,52)=5.706 <0.0001

strain-time interaction Two-way F(11,48)=0.6713 0.758

strain effect Two-way F(1,48)=8.356 0.0058

time effect Two-way F(11,48)=15.95 <0.0001

D

Wistar ESCIT One-way F(12,52)=5.503 <0.0001

Wistar vehicle One-way F(12,52)=9.504 <0.0001

strain-time interaction Two-way F(11,48)=0.2930 0.9842

strain effect Two-way F(1,48)=0.3533 0.5551

time effect Two-way F(11,48)=12.34 <0.0001

E

WKY ESCIT One-way F(12,52)=2.316 0.0186

WKY vehicle One-way F(12,52)=2.029 0.0353

strain-time interaction Two-way F(11,48)=0.1450 0.9993

strain effect Two-way F(1,48)=0.2962 0.5888

time effect Two-way F(11,48)=5.154 <0.0001

F

WKY ESCIT One-way F(12,52)=7.588 <0.0001

WKY vehicle One-way F(12,52)=5.578 <0.0001

strain-time interaction Two-way F(11,48)=0.2462 0.9923

strain effect Two-way F(1,48)=0.3474 0.5584

time effect Two-way F(11,48)=16.24 <0.0001

Figure 5. Escitalopram (0.1) into PFC

A

Wistar naïve One-way F(12,39)=8.055 <0.0001

WKY naïve One-way F(12,39)=2.677 0.0097

strain-time interaction Two-way F(11,36)=2.813 0.0094

strain effect Two-way F(1,36)=44.16 <0.0001

time effect Two-way F(11,36)=5.856 <0.0001

B

Wistar naïve One-way F(12,39)=32.524 <0.0001

WKY naïve One-way F(12,39)=4.241 0.0001

strain-time interaction Two-way F(11,36)=16.68 <0.0001

strain effect Two-way F(1,36)=370.9 <0.0001

time effect Two-way F(11,36)=30.32 <0.0001

C

Wistar naïve One-way F(12,39)=4.806 <0.0001

WKY naïve One-way F(12,39)=0.797 0.6513

strain-time interaction Two-way F(11,36)=2.552 0.0168



strain effect Two-way F(1,36)=25.33 <0.0001

time effect Two-way F(11,36)=2.796 0.0098

D

Wistar naïve One-way F(12,39)=4.269 0.0002

WKY naïve One-way F(12,39)=6.852 <0.0001

strain-time interaction Two-way F(11,36)=0.5140 0.8811

strain effect Two-way F(1,36)=0.7597 0.3892

time effect Two-way F(11,36)=6.328 <0.0001

E

Wistar ESCIT One-way F(12,65)=2.011 0.0371

Wistar vehicle One-way F(12,65)=6.641 <0.0001

strain-time interaction Two-way F(11,60)=2.336 0.0181

strain effect Two-way F(1,60=50.33 <0.0001

time effect Two-way F(11,60)=9.941 <0.0001

F

Wistar ESCIT One-way F(12,65)=4.875 <0.0001

Wistar vehicle One-way F(12,65)=10.767 <0.0001

strain-time interaction Two-way F(11,60)=6.757 <0.0001

strain effect Two-way F(1,60)=134.3 <0.0001

time effect Two-way F(11,60)=14.86 <0.0001

G

Wistar ESCIT One-way F(12,52)=6.556 <0.0001

Wistar vehicle One-way F(12,52)=7.760 <0.0001

strain-time interaction Two-way F(11,48)=0.8337 0.6079

strain effect Two-way F(1,48)=10.38 0.0023

time effect Two-way F(11,48)=9.807 <0.0001

H

Wistar ESCIT One-way F(12,39)=11.753 <0.0001

Wistar vehicle One-way F(12,39)=11.092 <0.0001

strain-time interaction Two-way F(11,36)=0.6984 0.7314

strain effect Two-way F(1,36)=0.1928 0.6632

time effect Two-way F(11,36)=17.32 <0.0001

I

WKY ESCIT One-way F(12,52)=6.225 <0.0001

WKY vehicle One-way F(12,52)=2.435 0.0175

strain-time interaction Two-way F(11,48)=0.5755 0.839

strain effect Two-way F(1,48)=0.04792 0.8276

time effect Two-way F(11,48)=4.354 0.0002

J

WKY ESCIT One-way F(12,39)=10.118 <0.0001

WKY vehicle One-way F(12,39)=3.432 0.001

strain-time interaction Two-way F(11,36)=2.208 0.0364

strain effect Two-way F(1,36)=41.30 <0.0001

time effect Two-way F(11,36)=9.402 <0.0001

K



WKY ESCIT One-way F(12,52)=3.722 0.0004

WKY vehicle One-way F(12,52)=0.703 0.7352

strain-time interaction Two-way F(11,48)=1.811 0.0783

strain effect Two-way F(1,48)=37.23 <0.0001

time effect Two-way F(11,48)=2.777 0.0071

L

WKY ESCIT One-way F(12,39)=7.490 <0.0001

WKY vehicle One-way F(12,39)=8.292 <0.0001

strain-time interaction Two-way F(11,36)=0.9025 0.5474

strain effect Two-way F(1,36)=0.01320 0.9092

time effect Two-way F(11,36)=8.072 <0.0001

Supplementary figure 2.

Locomotor activity

strain-time interaction Two-way F(1,36)=4.280 0.0479

strain effect Two-way F(1,36)=1.014 0.3226

light/dark cycle effect Two-way F(1,36)=504.4 <0.0001

Supplementary figure 3.

Food intake (A)

strain-treatment interaction Two-way F(1,72)=9.288 <0.0001

strain effect Two-way F(1,72)=138.2 <0.0001

age effect Two-way F(1,72)=3.151 0.0301

food intake: 9 weeks Wistar, 11 weeks WKY t-test <0.0001

Water intake (B)

strain-time interaction Two-way F(1,72)=0.8528 0.4697

strain effect Two-way F(1,72)=102.6 <0.0001

age effect Two-way F(1,72)=15.45 <0.0001

water intake: 9 weeks Wistar, 11 weeks WKY t-test 0.0001

Light Food intake (C)

strain-time interaction Two-way F(1,36)=7.331 0.0103

strain effect Two-way F(1,36)=86.97 <0.0001

time effect treatment Two-way F(1,36)=1.217 0.2773

Naïve: Wistar, WKY t-test <0.0001

Dark Food intake (C)

strain-time interaction Two-way F(1,36)=0.1227 0.7281

strain effect Two-way F(1,36)=3.429 0.0723

time effect treatment Two-way F(1,36)=0.9043 0.348

naïve: Wistar, WKY t-test 0.3867

Total  Food intake (C)

strain-time interaction Two-way F(1,36)=6.255 0.0171

strain effect Two-way F(1,36)=49.9 <0.0001

time effect treatment Two-way F(1,36)=7.641 0.0089

naïve: Wistar, WKY t-test 0.0004

Water intake (D)

DAY 1 t-test 0.0001

DAY 2 t-test 0.0006

DAY 3 t-test 0.0066



DAY 4 t-test 0.0461

PFC (E)

naive Wistar (9 w) One-way F(12,39)=8.055 <0.0001

naive Wistar (11 w) One-way F(12,39)=5.667 <0.0001

age (w)-time interaction Two-way F(11,36)=0.4114 0.9415

age　(w) effect Two-way F(1,36)=0.0010990.9737

time effect Two-way F(11,36)=12.29 < 0.0001

DRN (F)

naive Wistar (9 w) One-way F(12,39)=4.806 <0.0001

naive Wistar (11 w) One-way F(12,39)=3.758 0.0008

age (w)-time interaction Two-way F(11,36)=0.3389 0.9706

age　(w) effect Two-way F(1,36)=0.4557 0.5039

time effect Two-way F(11,36)=9.670 < 0.0001

Supplemetary figure 4. Escitalopram (1) into DRN

A

Wistar naïve One-way F(12,39)=13.243 <0.0001

WKY naïve One-way F(12,39)=6.852 <0.0001

strain-time interaction Two-way F(11,36)=0.8773 0.5696

strain effect Two-way F(1,36)=7.767 0.0084

time effect Two-way F(11,36)=17.12 <0.0001

B

Wistar naïve One-way F(12,39)=10.156 <0.0001

WKY naïve One-way F(12,39)=4.241 0.0001

strain-time interaction Two-way F(11,36)=0.5763 0.8351

strain effect Two-way F(1,36)=0.03180 0.8595

time effect Two-way F(11,36)=14.23 <0.0001

Supplementary Table 1. Results of statistical analysis using ANOVA and t-tests for data shown
in Figs. 1-5 and Supplementary Figs. 2-4.


