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Abstract

Subgroup analysis is an exploratory analysis often conducted with the expec-
tation of providing useful information to establish new research hypotheses in
medicine. However, use of subgroup analysis is currently limited, as the num-
ber of subgroups is often small, and thus subgroups are selected arbitrarily and
typically deviate from subgroups in which the readers of a paper are interested in.
In this study, we propose a method for representing the results of subgroup analysis
in graphical form by focusing on a comparative clinical study of treatment versus
control groups, with survival time as the primary endpoint, and in which subgroups
are created by dividing the range of continuous biomarkers. This method unifies
and strengthens fragmented data, enabling findings obtained in each subgroup by
assuming the Cox proportional hazard model. Moreover, this method renders it
possible to obtain information about any subgroup that an outside researcher is
interested in.

Key Words and Phrases: comparative clinical study, confidence interval, Cox proportional

hazards model, hazard ratio, subgroup.

1. Introduction

Subgroup analysis is often conducted in a comparative clinical study of the treat-
ment group versus the control group in phases 2 or 3, and with a typically small sample
size. The subgroup analysis is conducted by dividing the total sample size for the main
study into subgroups; thus, the number of subgroups is limited, and the size of each
subgroup is not sufficient to statistically appreciate the results obtained in each sub-
group. Subgroup analyses have been criticized in the field of statistics [Assmann et
al. (2000),Guillemin (2007),Harrington et al. (2019),Moyé and Deswal (2001),Priebe
(2020)].

Subgroup analyses are commonly used in medicine. It is an exploratory analysis and
is anticipated to provide medical researchers with valuable information in establishing
research hypotheses for their new clinical studies. It is often conducted to check whether
the treatment group is favored for each subgroup, when the treatment group favors the
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entire population [Sun et al. (2012),Thompson and Higgins (2002),White and Elbourne
(2005)]. In addition, it is used to search for populations with more (or less) favorable
effects. Guidelines for conducting appropriate subgroup analyses have been previously
published [Harrington et al. (2019), European Medicines Agency (Accessed: 2021–07–
27)].

The results of subgroup analysis are usually available from the published papers,
clinical study reports and so on. If the original data is available, it is possible to assess
the result not only in the subgroups that are published but also in any subgroup that
researchers are interested in. However, in general, not anyone is accessible to the original
data which was used for subgroup analysis. Therefore, researchers can only guess the
result in any subgroup by the published results. The methods for assessing the result in
such subgroups have not been established and discussed.

In this paper, we focus on a comparative clinical study of the treatment group versus
the control group with survival time as the primary endpoint, in which subgroups are
created by dividing the range of continuous biomarker. In particular, we focused on the
subgroup analysis conducted for the purpose of screening certain cancer patients who
could benefit from anti-PD-L1 immunotherapy, where programmed death-ligand 1 (PD-
L1) expression level is used as a biomarker. We suppose that the number of subgroups
was ≥ 2, and the sample size, value of the hazard ratio (HR), and 95% confidence
interval (CI) are summarized for each subgroup; the HRs and CIs were computed under
the assumption of the Cox proportional hazard model.

We developed a method to unify and strengthen the fragmented and weak findings
in each subgroup, to represent them in a simple graph (see Fig 1, 2, and 3 below), and
to make it possible to obtain information about the HR and its CI for any subgroup in
which an outside researcher is interested in.

2. Materials and methods

2.1. Patients and ethical considerations

The data used for the application of the methods proposed in this paper are sum-
marized in tables in published papers; thus, no ethical considerations are provided.

2.2. Mathematical development

Suppose that in a published paper, there are k (k ⩾ 2) subgroups and the i-
th subgroup is created by collecting individuals in the treatment and control groups
whose value of the biomarker is between bi and bi+1, which we call the subgroup Bi,
i = 1, · · · , k, throughout this paper. We assume that subgroups are not overlapped;
that is, individuals that simultaneously belong to several subgroups do not exist.

We assume that sample size, the value of HR and its CI have been given in subgroup
Bi and we denote them by ni, hri, and [li, ui], respectively.

We assume the following Cox proportional hazard model.

ln
λ(t|z, x)
λ0(t)

= α1z + α2x+ α3zx,

where t is the time to event, z = 1(0) if the treatment group (the control group), x
is a value of the biomarker, λ0 (t) is the baseline hazard function, α1, α2 and α3 are
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unknown parameters. Then, the log HR of treatment group relative to control group at
x, say β (x), may be represented by

β(x) = ln
λ(t|z = 1, x)

λ(t|z = 0, x)
= α1 + α3x. (1)

In the following sections, we try to assess the value and the CI of HR at any value of x
based on ni, hri, [li, ui], and Eq.(1).

2.2.1. Assessing the value of HR at any value of the biomarker

Let HRi be a random variable that corresponds to the given value of HR in sub-
group Bi and approximate the mean of lnHRi by β(xi), where xi is the midpoint of
the interval (bi, bi+1), i.e., xi = (bi + bi+1)/2. Then, since lnHRi follows approximately
the asymptotic normal distribution with mean β(xi) and variance σ2

i /ni [Fleming and
Harrington (2005)], we may reasonably represent lnHRi by

lnHRi = β(xi) + εi = α1 + α3xi + εi,

where εi is the error that satisfies E [εi] = 0, V [εi] = σ2
i /ni, and σi is the unknown

positive parameter. Assuming σ1 = · · · = σk, the estimates of α1 and α3 are obtained
by minimizing the weighted squared errors

∑k
i=1 ni {lnHRi − β(xi)}2 as follows:

α̂1 = lnHR− x̃α̂3, α̂3 =

∑k
i=1 ni (xi − x̃)

(
lnHRi − lnHR

)∑k
i=1 ni (xi − x̃)

2
(2)

when k ⩾ 2, where ni is the sum of sample sizes of treatment group and control group
in Bi, x̃ =

∑k
i=1 nixi/

∑k
i=1 ni, and lnHR =

∑k
i=1 ni lnHRi/

∑k
i=1 ni.

Let HR (x) be the true value of HR at any x. Using these α̂1 and α̂3 we propose
to assess the value of lnHR at any x, say lnHR(x), by

ln ĤR(x) = α̂1 + α̂3x.

The mean of ln ĤR(x) is given by

E
[
ln ĤR(x)

]
= lnHR(x).

Finally, we propose to assess the value of HR(x) by

ĤR(x) = exp
(
α̂1 + α̂3x

)
. (3)

The simulation below ensures the accuracy of assessing the true HR(x) by ĤR(x),
even when k = 2, provided that the Cox proportional hazard model fits to the data,
although its variance tends to be large when k is small, as will be shown in the next
section.
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2.2.2. Assessing CI

In this section, we first derive the variance of ln ĤR (x). Then, we propose a method
for assessing the CI of HR at any value of the biomarker.

Assuming σ2 = σ2
1 = · · · = σ2

k, the variance of ln ĤR(x) may be approximated by

V
[
ln ĤR(x)

]
≈

{
1∑k

i=1 ni

+
(x− x̃)2∑k

i=1 ni(xi − x̃)2

}
σ2. (4)

Then, the 100 (1− α)% CI of lnHR(x) is approximately given by

[
ln ĤR(x)− zα/2

√
V (ln ĤR(x)), ln ĤR(x) + zα/2

√
V (ln ĤR(x))

]
,

where zα is the upper 100 (1− α)% percentile of the standardized normal distribution.
From this interval, the 100 (1− α)% approximate CI of HR(x) is obtained by

[
ĤR(x)

/
exp

(
zα/2

√
V (ln ĤR(x))

)
, ĤR(x) exp

(
zα/2

√
V (ln ĤR(x))

]
.

Unknown σ is involved in this CI, which may be assessed as follows. Since the 100(1−α)%
CI of β(xi) is given by

[
lnHRi − zα/2σi

/√
ni , lnHRi + zα/2σi

/√
ni

]
and furthermore

the CI of HRi, [ℓi, ui], is supposed to have been given in subgroup Bi. Thus, we may
identify

ln ℓi = lnHRi − zα/2
σi√
ni

, lnui = lnHRi + zα/2
σi√
ni

.

From this we may get

σi =
√
ni

(
lnui − ln ℓi

2zα/2

)
.

Since σ = σi is assumed for i = 1, · · · , k, we propose to assess σ by

σ̂ =
1

k

k∑
i=1

σi =
1

k

k∑
i=1

√
ni

(
lnui − ln ℓi

2zα/2

)
. (5)

Therefore, we propose to assess the 100 (1− α)% confidence interval of lnHR (x) by

[
ĤR (x)

/
exp

(
zα/2

√
V̂
(
ln ĤR (x)

))
, ĤR (x) exp

(
zα/2

√
V̂
(
ln ĤR (x)

))]
,

where V̂ [lnHR (x)] is the estimates of V [lnHR (x)] that σ̂ was pluged into σ.
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2.2.3. HR and CI in a new subgroup

It is often the case that the subgroups analyzed in published papers are not those
in which researchers planning new studies are interested in. Suppose that the marker
levels of the subgroup in which the researcher is interested in are from a to b, we may
assess the value of HR in the subgroup by

ĤR (a, b) = exp

(∫ b

a

log ĤR(x)f(x)dx

)
,

where ĤR(x) is given in Eq.(3) and f(x) is a probability density function of X. Setting
f(x) a uniform distribution over (a, b), it follows that

ĤR (a, b) = ĤR

(
a+ b

2

)
. (6)

Let n be the sample size to be taken in the new subgroup (a, b). We propose to assess
the value of HR in the new subgroup by Eq.(6), then the upper and the lower CI of the
HR in the subgroup (a, b) are given by[

ĤR(x∗)
/
exp

(
zα/2σ̂/

√
n
)
, ĤR(x∗) exp

(
zα/2σ̂/

√
n
)]

,

where σ̂ is given in Eq.(5) and x∗ = (a+ b)/2.

3. Results

We analyzed two datasets to illustrate the proposed method in real results of sub-
group analysis.

3.1. Application of the proposed method when k = 2

We applied the proposed method to the results of subgroup analysis from Hellmann
et al. (2019). They compared the overall survival between Nivolumab plus ipilimumab
and a chemotherapy in a phase 3 randomized controlled trial. One of the goals is to
explore the effect of the treatment in the subgroups of the PD-L1 expression level.
Table 1 shows a part of the results of the exploratory subgroup analysis. In Table 1, the
number of subgroups is two; the first subgroup is composed of PD-L1 expression levels
1-49% whose upper CI of HR exceeds 1 and the second subgroup is composed of PD-L1
expression levels ⩾ 50% whose upper CI is less than 1.

Table 1: Result of the exploratory subgroup analysis with respect to PD-L1 expression
levels in nivolumab plus ipilimumab vs. chemotherapy. The result was copied from
Hellmann et al. (2019).

Additional exploratory subgroup analysis n HR for death (CI)
PD-L1 expression level 1-49% 396 0.94 [0.75, 1.18]
PD-L1 expression level ⩾50% 397 0.70 [0.55, 0.90]

After applying the proposed method, we obtained α̂1 = 0.086, α̂3 = −0.590, σ̂ =
2.032 and Fig 1 that shows the HR(x) and its CI over the entire range of PD-L1
expression.
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Figure 1: HR(x) and its 95% CI assessed from Table 1.

The subgroups in Table 1 are crude and could fail to respond to questions from
researchers, such as the value of the PD-L1 expression level whose 95% upper CI of
HR(x) crosses HR (x) = 1 (Q1), or what would be the values of HR and its CI in the
new subgroup made by the PD-L1 expression level from a to b (Q2). We may answer to
Q1 and Q2 as follows;

Q1: The answer to Q1 is immediately obtained as about 44% by the inspection of Fig
1.

Q2: Suppose that a new subgroup is given by the PD-L1 expression level from 40% to
80% and n = 350 , then we have σ̂ = 2.402, and HR and CI in the subgroup are
assessed to be ĤR = 0.765, and 95%CI= [0.595, 0.984] by the proposed methods.

3.1.1. Application of the proposed method when k > 2

We applied the proposed method to the results of subgroup analysis from Borghaei
et al. (2015). They compared the overall survival between Nivolumab and Docetaxel in
the phase 3 trial. One of the goals is to explore the treatment effect in the subgroups of
PD-L1 expression level.

Table 2 summarizes the results of the subgroup analysis of the clinical trial that
compared Nivolumab vs. Docetaxel for lung cancer, in which PD-L1 expression levels
were used to establish the subgroups. This table is a copy of the table published on
the European Medicines Agency website (European Medicines Agency, 2015) [12]. Five
subgroups are given in the table; however, one subgroup, subgroup SG2, is overlapped
with subgroups SGi, i = 3, 4, 5. Since no overlap is assumed among subgroups in the
proposed methods, we apply first the methods to subgroups, SG1, SG3, SG4 and SG5,
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excluding SG2, then to subgroups SG1 and SG2. Note that, although the value of HR
in SG3 is outstandingly large from the values of HR in the other subgroups, we include
it in the analysis since it is the value obtained from 81 patients.

Table 2: Overall survival hazard ratio in subgroups of PD-L1 expression levels.∗

Subgroup
PD-L1 expression events (sample size)

HR 95%CI
level Nivolumab Docetaxel

SG1 < 1% 77 (108) 75 (101) 0.90 [0.66, 1.24]
SG2 ⩾ 1% 68 (123) 93 (123) 0.59 [0.43, 0.82]
SG3 ⩾ 1% and <10% 27 (37) 30 (44) 1.33 [0.79, 2.24]
SG4 ⩾ 10% and <50% 11 (20) 26 (33) 0.61 [0.30, 1.23]
SG5 ⩾ 50% 30 (66) 37 (46) 0.32 [0.20, 0.53]

∗ Copy of the table from Hellmann et al. [11].

When we apply the proposed method to subgroups SG1, SG3, SG4 and SG5, we
obtain α̂1 = 0.020, α̂3 = −1.537, σ̂ = 2.493, and Fig 2; and when we apply the method
to SG1 and SG2, we obtain α̂1 = −0.101, α̂3 = −0.845, σ̂ = 2.454, and Fig 3.
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Figure 2: HR(x) and its 95% CI: obtained from SG1, SG3, SG4 and SG5

Inspection of the figures shows shapes of HR(x) over the whole range of x in Fig 2
and 3 are fairly close, but the 95% CI in Fig 3 is wider than that in Fig 2, in particular,
when x is away x̃. Nevertheless, the values of the PD-L1 expression levels whose value
of the upper CI crosses 1 is not far from each other, namely 0.18 in Fig 2 and 0.03 in Fig
3. These findings would indicate that the proposed method works fairly well in practice,
even when the number of subgroups is only two.
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Figure 3: HR(x) and its 95% CI: obtained from SG1 and SG2

Comparing between Fig 1, Fig 2, and Fig 3, in which the numbers of subgroups is
two, the CI in Fig 3 is much wider than that in Fig 1. This is because the sample sizes
of the subgroups in Fig 3 are approximately 1/5 of those sizes in Fig 1.

4. Simulation

The Monte Carlo simulation was conducted to verify the validity of the proposed
method by assigning subgroups, sample sizes, and underlying distributions. The four
simulation scenarios are presented in Table 3; the number of subgroups in all scenarios
is two, and the ranges, the midpoint x∗

i , and the sample sizes ni of the subgroup are
identical in scenario A, B, C, and D except for σi (i = 1, 2). The ranges of the subgroups
of the scenarios are at one end, i.e., (0, 0.1) and (0.1, 0.3).

We set β (x) = 0.1 − 1.5x. We generated lnHRi ∼ N
(
β (x∗

i ) , σ
2
i /ni

)
(i = 1, 2) in

each scenario given in Table 3. The parameters α1 and α3 were assessed based on Eq.
(2). We calculated ĤR (x0) for x0 = 0.1, 0.2, · · · , 0.9.

Let ĤR (x0)j be the assessed value of ĤR (x0) in the j-th repetition (j = 1, · · · , 500).
We computed the Monte Carlo average of ĤR (x0)1 , · · · , ĤR (x0)500 for each x0.

Figure 4 presents the Monte Carlo average values in the four scenarios and the true
value of HR (x0). The inspection of the figure shows that

(i) the curves of scenarios A, B, and C are close to the true curve, meaning that the
proposed method assesses well the values of the true HR even if the given number
of subgroups are two, lean to the smallest side of the PD-L1 expression levels, and
the assumption of equal standard deviations (s.d.) is violated a little, i.e., less
than σ1 = 1 vs. σ2 = 4,
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Table 3: The four scenarios in the simulation.

Scenarios
Subgroup

ni x∗
i σii ranges

A 1 (0, 0.1) 160 0.05 1
2 (0.1, 0.3) 40 0.2 1

B 1 (0, 0.1) 160 0.05 1
2 (0.1, 0.3) 40 0.2 2

C 1 (0, 0.1) 160 0.05 1
2 (0.1, 0.3) 40 0.2 4

D 1 (0, 0.1) 160 0.05 1
2 (0.1, 0.3) 40 0.2 10

(ii) and furthermore, the curve of scenario D shows that if the assumption of equal s.d.
is violated large, i.e., σ1 = 1 vs. σ2 = 10, the proposed method is valid even if the
ranges of subgroups are at the one end of the PD-L1 expression level, indicating
that the proposed method is robust against the violation of equal s.d. assumption
if the number of subgroups is increased (k > 2).
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Figure 4: The Monte Carlo average of the assessed hazard ratios in the four scenarios
and the true value of hazard ratio

5. Discussion

A wide variety of subgroup analyses were performed for various subqroups. Among
them, the focus of this paper is subgroups that are made by dividing the range of
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continuous biomarkers, such as PD-L1 expression, which is often used in cancer clinical
trials to examine the effect of immunotherapy. The purpose of subgroup analyses in these
studies is to explore the level of PD-L1 expression that could benefit patients from anti-
PD-L1 immunotherapy. Examining Fig 1 to Fig 3, it is clear that the proposed method
enables this purpose better than reporting the findings in fragmented tables in each
subgroup. Furthermore, the subgroups in published papers are often made arbitrarily,
but the proposed methods can liberate this arbitrariness.

One may fear over-interpretation of graphs, but the simulation shows that this
would not be the case as long as the Cox proportional hazard model fits well with the
data. The majority of papers on comparative cancer clinical studies of treatment vs.
control groups, and with survival time as the primary endpoint, tend to apply the log
rank tests or the stratified log rank test for statistical analysis using this assumption of
the Cox proportional hazard model.

6. Conclusion

Using graphs is a modern research approach that offers holistic and visual perspec-
tives of results, compared to the use of tables. In particular, it is effective in the case
of subgroup analysis in which the number of subgroups is limited and the size of the
subgroup is small. From the graph, We can also assess the values of HR and its CI for
any subgroup that researchers are interested in. We hope that the proposed method can
become a standard tool for representing the results of subgroup analyses in the future.
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