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Abstract

Objective

Metformin is known to have a beneficial effect on body weight and body composition,

although the precise mechanism has not been elucidated yet. The aim of this study is to

investigate the effects of metformin on energy metabolism and anthropometric factors in

both human subjects and rats.

Methods

In human studies, metformin (1500mg/day) was administered to 23 healthy subjects and 18

patients with type 2 diabetes for 2 weeks. Metabolic parameters and energy metabolism

were measured during a meal tolerance test in the morning before and after the treatment of

metformin. In animal studies, 13 weeks old SD rats were fed 25–26 g of standard chow only

during 12-hours dark phase with either treated by metformin (2.5mg/ml in drinking water) or

not for 2 weeks, and metabolic parameters, anthropometric factors and energy metabolism

together with expressions related to fat oxidation and adaptive thermogenesis were mea-

sured either in fasting or post-prandial state at 15 weeks old.

Results

Post-prandial plasma lactate concentration was significantly increased after the metformin

treatment in both healthy subjects and diabetic patients. Although energy expenditure (EE)

did not change, baseline respiratory quotient (RQ) was significantly decreased and post-

prandial RQ was significantly increased vice versa following the metformin treatment in both

groups. By the administration of metformin to SD rats for 2 weeks, plasma levels of lactate

and pyruvate were significantly increased in both fasting and post-prandial states. RQ dur-

ing a fasting state was significantly decreased in metformin-treated rats compared to con-

trols with no effect on EE. Metformin treatment brought about a significant reduction of
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visceral fat mass compared to controls accompanied by an up-regulation of fat oxidation-

related enzyme in the liver, UCP-1 in the brown adipose tissue and UCP-3 in the skeletal

muscle.

Conclusion

From the results obtained, beneficial effects of metformin on visceral fat reduction has been

demonstrated probably through a mechanism for a potential shift of fuel resource into fat oxi-

dation and an upregulation of adaptive thermogenesis independent of an anorexigenic

effect of this drug.

Introduction

In the 2013 issue of the International Diabetes Federation (IDF) Diabetes Atlas, the prevalence

of diabetes in the Western Pacific (WP) Region was reported to be 8.6% in 2013, or 138 million

adults, and was estimated to rise to 11.1%, or 201 million adults, in 2035 [1]. Type 2 diabetes

accounts for 95% of the diabetes in Japanese diabetic patients and the number of patients is

still increasing along with the number of overweight/obesity individuals reflecting environ-

mental factors, including overeating and a lack of exercise. However, it is of interest that the

prevalence of diabetes in Asian people is almost the same as that in Caucasian despite of their

much lower BMI. The reason is probably genetic and is likely due to their lower capacity for

insulin secretion in comparison to Caucasian’s [2]. Asian people, including Japanese, are

therefore thought be much more likely to be affected by diabetes than people in western coun-

tries in the era of satiety.

Generally, most glucose-lowering strategies including the administration of oral hypoglyce-

mic agents (OHAs) such as sulfonylurea and thiazolidinedione and insulin injections for the

treatment of diabetes are associated with the potential risk of weight gain, and may lead to a

worsening of blood glucose control [3, 4]. In contrast, metformin is known to have a neutral

effect on body weight and was shown to reduce the amount of body fat and improve body

composition in previous studies performed in type 2 diabetic patients [5, 6]. These beneficial

effects of metformin on body weight and composition have mostly been discussed in relation

to its anorexigenic effect, which has thus far been demonstrated in mice [7] and rats [8] so far.

The anorexigenic effect of metformin, along with weight reduction and the improvement of

blood pressure, lipid profile and glucose control has also been reported in patients with type 2

diabetes [9] and other life style-related disease [10]. It is well established that metformin pri-

marily lowers blood glucose concentrations by suppressing hepatic glucose production [11]

and ameliorating hepatic insulin resistance. Metformin leads to the accumulation of AMP in

the liver, resulting in the inhibition of adenylate cyclase [12]. The reduction of cAMP levels

and protein kinase A activity suppresses glucagon-induced gluconeogenesis in the liver.

Metformin has also been demonstrated to increase AMP-activated protein kinase (AMPK)

activity in rat hepatocytes and in rat and human skeletal muscle in vitro [13, 14]. AMPK is a ser-

ine-threonine kinase that responds to fluctuations in cellular energy levels and which is activated

in situations of energy consumption, thus it has the function of maintaining energy homeostasis

[15, 16]. In skeletal muscle, AMPK is activated during exercise and is involved in contraction-

stimulated glucose transport and fatty acid oxidation. In the liver, AMPK inhibits the production

of glucose, cholesterol and triglyceride and stimulates fatty acid oxidation. AMPK regulates sev-

eral of the key proteins involved in lipid metabolism. AMPK phosphorylates and inactivates
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acetyl-Co-A carboxylase (ACC), a rate-limiting enzyme for fatty acid synthesis [17]. The inac-

tivation of ACC by AMPK in the liver results in a decrease in malonyl-CoA, higher carnitine

palmitoyl transferase 1 (CPT-1) activity and the enhancement of fatty acid oxidation [18].

Furthermore, it has been reported that metformin enhanced expressions of uncoupling pro-

teins (UCPs), which are key enzymes of adaptive thermogenesis, both in animal study [19] and

in vitro culture study [20]. Thus, it is hypothesized that the administration of metformin pro-

motes the reduction of body fat amount via the acceleration of fat oxidation and adaptive ther-

mogenesis in vivo. However, little is known about the effects of metformin on fat oxidation,

which not only include the effects on energy metabolism that are directly measured by respira-

tory gas analysis but also the precise molecules that are related to fat oxidation and thermogene-

sis, and consequently to its beneficial effects on body composition in vivo. The present study

was performed to clarify these issues by simultaneously investigating metformin’s effects on

energy metabolism and anthropometric factors in both human subjects and animals.

Methods

Human studies

Subjects. 23 healthy volunteers (16 males, 28 ± 3 years old, BMI 22.0 ± 4.1 kg/m2) and 18

drug-naïve patients with type2 diabetes mellitus (10 males, 42 ± 16 years old, BMI 31.2 ± 6.7

kg/m2, HbA1c 9.1 ± 2.1%) were enrolled in the present study. Healthy subjects were recruited

by advertisement, and diabetic subjects were recruited randomly from patients who had been

admitted to the Division of endocrinology and Metabolism, Kurume University Hospital from

March 2013 to October 2014. All participants provided written informed consent. All proce-

dures were compliant with the Declaration of Helsinki, and the experimental protocol was

approved by the ethical committee of Kurume-University (study number: 10152).

Experimental protocol. Metformin hydrochloride (1500 mg/day) was administered

either 23 healthy subjects or 18 type 2 diabetic patients for 2 weeks. Subjects started taking

metformin from small dose with gradual increasing (250mg twice daily on 1st and 2nd day,

500mg twice daily on 3rd and 4th day, 500mg three times daily on 5th day and thereafter). After

an overnight fast, meal tolerance tests (592 kcal, 75 g of carbohydrate, 28.5 g of fat; Saraya Co.,

Osaka, Japan) were performed in the morning twice before and after the 2 week-administra-

tion of metformin. On the meal tolerance test, blood samples were collected and respiratory

gas analysis was performed before and 1, 2, 3 hours after an ingestion of meal. Energy intake

was pre-specified to each diabetic patient base on their height and body weight, and the

amount of actual food intake was checked at every meal for 2 weeks of metformin treatment.

Measurements. Plasma glucose, serum triglyceride levels were assessed according to the

standard procedures. Plasma concentrations of insulin were measured with standard ELISAs.

Blood levels of lactate were determined enzymatically with spectrophotometric assays. The vol-

ume of oxygen consumed (VO2) and the volume of carbon dioxide produced (VCO2) were

measured with an indirect calorimetry (Oxycon Alpha, Fukuda-Denshi, Tokyo, Japan) for the

calculation of energy expenditure (EE) and respiratory quotient (RQ) according to the formula

as below [21].

EE
kcal
min

� �

¼ 3:815� VO2 þ 1:232� VCO2

RQ ¼ VCO2 � VO2

After a period for 15 min at rest, respiratory gas analysis was performed for 10 or 15 min at

each time point.

Metformin and fat oxidation in vivo
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Animal studies

Animals. Male Sprague-Dawley (SD) rats (Jcl:SD, CREA Co Ltd, Osaka, Japan) were used

in this study. The animals were housed in a controlled room (temperature 25 ± 2˚C, humidity

60 ± 10%) under a 12 h light-dark cycle (light on 7:00–19:00). All the experiments were per-

formed in accordance with protocols approved by the Kurume University Animal Experiment

Committee, based on the NIH Guidelines for the Care and Use of Laboratory Animals (NIH

publication, 1996). All surgical procedures were performed under 3% isoflurane (Wako Pure

Chemical Industries, Ltd.,Osaka, Japan), and all efforts were made to minimize suffering.

Experimental protocol. A preliminary experiment was performed to measure food con-

sumption of 11-week-old SD rats during light phase and dark phase, respectively. Rats fed 24.2

±0.7g of standard chow (10 kcal% fat, produced by Research Diets, Inc., New Brunswick, NJ,

USA: 23 open source diet code D12450B) per whole day, and more than 90% was consumed

during dark phase. Thus we determined 25-26g of feeding only during dark period to clearly

differentiate fasting and post-prandial state in the following experiments.

Rats at 12 weeks of age (n = 24) were started to be fed only during 12-h dark period for the

acclimation to fasting and feeding rhythm for one week as mentioned above. 25–26 g of pellet

chow was fed at 19:00 and withdrawn at 7:00 after the measurement of food intake. At 13

weeks old, rats were divided into two groups (n = 12 in each group); given drinking water

either containing metformin hydrochloride (2.5 mg/ml) or not. All rats were housed individu-

ally in clear plastic TPX1 cages (W27 × D43 × H20 cm) with paper bedding. Body weight was

measured every week from 13 to 15 weeks of age. Food intake during dark period and amount

of drinking for a whole day were measured at 7:00 every day.

Analysis of respiratory gas and body composition. After 2 weeks, rats at 15 weeks old

were moved individually into acrylic metabolic chambers equipped with gas analysis system

(ARCO system, Chiba) for two days for the measurement of oxygen consumption and respira-

tory quotient. The system consists of eight acrylic metabolic chambers, a mass spectrometer

(model ARCO-2000) and a gas sampler (model ARCO-2000-GS10). Each metabolic chamber

had a room (752 cm2 floor and 20 cm in height), and room air was pumped through the cham-

bers at a rate of 2.0 L/min. The air from each chamber was sampled for 15 seconds. During the

last 5 seconds, VO2 and VCO2 concentration were measured, and EE and RQ were calculated

as mentioned in human study. The respiratory data for each chamber were obtained every 5

min, and the mean and cumulative data for 12 h during light period or 24 h were calculated

from 144 or 288 samplings, respectively.

After the measurement of respiratory gas, visceral and subcutaneous fat volumes (mm3)

were measured using in vivo micro-computed tomography (R_mCT2, Rigaku Co., Tokyo,

Japan) under imaging conditions of FOV73 (φ73 mm×H57 mm), 90 kV tube voltage and

160 μA tube current. Rats were anesthetized with 3% isoflurane and placed supine in the

machine, and serial 4 mm scans were performed from the anterior to the posterior aspect of

4th lumbar vertebra. Fat analysis software (Rigaku Co., 24 Tokyo, Japan) estimated the volumes

of adipose tissue, bone, air and the remainder on the basis of their different x-ray densities,

and distinguished visceral and subcutaneous fat tissues by detecting the abdominal muscle

layers.

Sampling and blood measurement. After the completion of anthropometric measure-

ment, rats were sacrificed under anesthesia using 3% isoflurane in either fasting (19:00) or

post-prandial (7:00) state, 6 rats in each time point. Blood samples were collected via abdomi-

nal aorta, and treated immediately as described below. Liver, brown adipose tissue (BAT) and

skeletal muscle were obtained and cut into small pieces and immediately frozen in liquid nitro-

gen, then stored at −80˚C.

Metformin and fat oxidation in vivo
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Blood glucose concentrations were measured with a handheld glucose meter (One Touch

Ultra; LifeScan, Milpitas, CA) immediately after blood sampling. Blood lactate and pyruvate

were determined enzymatically with spectrophotometric assays. The remaining blood samples

were centrifuged (3000rpm, 10min), and serum samples were separated and stored at −80˚C

until the assay. Serum concentrations of insulin were determined with a Rat Insulin ELISA

KIT (Shibayagi, Gunma, Japan).

Quantitative real-time RT-PCR. Expressions of fat oxidation-related enzyme such as

Acyl-CoA synthase, CPT-1, Acyl-CoA dehydrogenase, pyruvate dehydrogenase kinase (PDK)

and adaptive thermogenesis-related molecules such as UCP-1, UCP-3 were measured by quan-

titative real time-PCR as described previously [22]. RNA was isolated using RNA-Bee (Cosmo

Bio, Tokyo, Japan), and 5 μg of total RNA was reverse-transcribed to cDNA using a kit from

Invitrogen (Carlsbad, CA, USA). SYBR green-based real-time quantitative PCR of cDNA tem-

plates was performed using StepOnePlus (Applied Biosystems, Foster City, CA, USA). The

PCR cycling conditions were 10 min at 95˚C followed by 40 cycles of 30 sec at 95˚C, 30 sec at

53–64˚C, and 30 sec at 72˚C. The results were calculated as the expression of the target gene

relative to the expression of the glyceraldehyde-3-phosphate dehydrogenase (Gapdh) gene.

Forward and reverse primer sequences used in this study are shown in S1 Table.

Western blot analysis. Protein levels of AMPKα, phosphorylated AMPKα (pAMPKα),

ACC, phosphorylated ACC (pACC) from fasting samples were measured by Western blot

analysis as described previously [20]. Liver tissue was lysed in ice-cold lysis buffer containing 1

mmol/l dithiothreitol (DTT), 0.0025% NP40 and a cocktail of proteinase inhibitors. The lysate

was centrifuged at 19,000 g for 15 min at 4˚C, and the supernatant was collected as whole-cell

extract. The total protein concentration of the whole-cell was measured using the Bradford

reagent (Bio Rad, Hercules, CA, USA). After being heated at 100˚C for 5 min, 20 μg total pro-

tein was loaded into each well, separated by 7.5% SDS-PAGE (Wako, Osaka, Japan) and trans-

ferred to a nitrocellulose membrane. The membrane was incubated with rabbit polyclonal

antibodies against AMPKα, pAMPKα (Thr172), ACC, pACC (Ser79) or rabbit monoclonal

antibody against GAPDH (Cell Signaling Technology, Danvers, MA, USA) at 4˚C overnight.

After being washed, the membrane was incubated with peroxidase-conjugated goat anti-rabbit

IgG (Wako) and then visualized using an ECL system (GE Healthcare, Buckinghamshire, UK).

Pyruvate tolerance test. In another series of experiment with the same protocol, intraper-

itoneal pyruvate tolerance test was performed in SD rats at 15 weeks old with or without met-

formin treatment for 2 weeks (n = 6 in each group). After 12 h of fasting, a sodium pyruvate

solution (250 mg/ml) was injected ip at a dosage of 2 g/kg. Glucose levels were determined in

blood extracted from the tail before (0 min) and 15, 30, 60, 90 and120 min after an ip pyruvate

injection.

Statistical analysis

All tests were performed using JMP Pro Ver. 11 (SAS Institute Inc., USA). In human studies,

data are presented as the means ± S.D. Statistical significance was determined by paired t-test.

In animal studies, data are presented as the means ± S.E. Statistical significance was deter-

mined by unpaired Student’s t-test. A p-value < 0.05 was considered to be statistically

significant.

Results

Human studies

Although 2 healthy subjects and 2 diabetic patients complained bloating and 3 healthy subjects

and 2 diabetic patients complained mild diarrhea after the administration of metformin, no

Metformin and fat oxidation in vivo
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one was obliged to quit the medication due to adverse effects. Obvious anorexigenic effect was

not observed in either healthy subjects or diabetic patients during 2-week metformin

treatment.

Significant decreases of plasma glucose concentrations were observed at all points in

patients with type 2 diabetes and 2 hours after meal in healthy subjects compared to values

before administration (Fig 1). Although BMI in healthy subjects did not change significantly

(22.4 ± 4.1 to 22.0 ± 4.1), a significant decrease of BMI was observed in diabetic patients by the

administration of metformin (31.2 ± 6.7 to 30.6 ± 6.6, P<0.0001). The administration of met-

formin brought about significant reductions of serum insulin levels after 2 and 3 hours in

healthy subjects and serum triglyceride concentrations after 1 and 3 hours of cookie ingestion

in diabetic patients. Blood lactate levels after cookie ingestion were significantly increased by

the administration of metformin in both the healthy subjects and diabetic patients (Fig 1).

Although there was no difference in EE, a significant decline of RQ before meal was

brought about by the administration of metformin in both healthy subjects and diabetic

patients. Conversely, metformin administration significantly enhanced post-prandial RQ in

both healthy subjects and diabetic patients (Fig 2).

Animal studies

Body weight, food intake, and water consumption did not differ between the two groups at

any point for two weeks of metformin treatment. However, visceral fat volume was signifi-

cantly decreased by the treatment of metformin while subcutaneous fat did not differ signifi-

cantly between the groups (Table 1).

Although plasma glucose levels were almost the same between control and metformin-

treated rats during fasting and post-prandial state, fasting plasma insulin levels were signifi-

cantly lower in metformin-treated rats than control rats. Moreover, plasma concentrations of

lactate and pyruvate were significantly (P<0.05) increased in both fasting and post-prandial

state by the treatment of metformin for 2 weeks (Fig 3).

Although EE did not change during light phase, slight but significant increase of EE was

observed during dark phase by the administration of metformin. RQ during light phase

decreased significantly in metformin-treated rats compared to control rats. There was slight

but significant decrease in RQ during post-prandial state by metformin treatment (Fig 4).

Expression of fat oxidation related enzymes such as Pdk, Cpt1, Acs, and Acad were signifi-

cantly higher in metformin-treated rats than those in control rats during both fasting and

post-prandial states. (Fig 5)

As shown in Fig 6, by the treatment of metformin the protein levels of phosphorylated

AMPK and ACC, key molecules of fat oxidation, were significantly enhanced in the liver dur-

ing fasting state.

Results of gene expressions related to adaptive thermogenesis are described in Fig 7. During

post-prandial state, UCP-1 in the BAT and UCP-3 in the skeletal muscle were markedly

enhanced by the administration of metformin in spite of no effects of this drug during fasting

state.

In pyruvate tolerance test, metformin treatment brought about a significant reduction of

blood glucose levels before and 30, 60 minutes after the intraperitoneal administration of pyru-

vate (Fig 8).

Discussion

The principal results of the present study are as follows. First, lactate and pyruvate concentra-

tions increased, reflecting the enhancement of anaerobic glycolysis by metformin treatment

Metformin and fat oxidation in vivo
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[23]. Second, metformin decreased RQ, suggesting that fat oxidation was accelerated by this

drug. Third, metformin reduced visceral fat in rats, independent of its anorexigenic effect.

Fig 1. Effects of metformin on metabolic factors in healthy subjects (A, C, E, G) and diabetic patients (B, D, F,

H). A, B; glucose, C, D; insulin, E, F; triglyceride, G, H; lactate. Data are presented as mean ± S.D. Paired t test was

used for the comparison between groups. Open circle and dotted line; before metformin treatment, closed circle and

solid line; after a 2-week treatment by metformin. *P<0.05, **P<0.01, ***P<0.001 vs. the value before metformin

treatment.

doi:10.1371/journal.pone.0171293.g001

Metformin and fat oxidation in vivo
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Finally, metformin was found to upregulate enzymes related to fat oxidation and adaptive ther-

mogenesis, in line with a lower RQ and visceral fat mass reduction.

Fig 2. Effects of metformin on respiratory quotient (RQ) and energy expenditure (EE) in healthy subjects (A and C) and

diabetic patients (B and D). A, B; RQ, C, D; EE. Data are presented as mean ± S.D. Paired t-test was used for the comparison

between groups. Open circle and dotted line; before metformin treatment, closed circle and solid line; after a 2-week treatment by

metformin. *P<0.05 vs. the value before metformin treatment.

doi:10.1371/journal.pone.0171293.g002

Table 1. Anthropometric factors, food intake and water consumption in control and metformin-treated rats.

treatment 13 weeks 14 weeks 15 weeks

body weight (g) control 413 ± 9 451 ± 6 462 ± 5

metformin 414 ± 9 443 ± 6 453 ± 6

subcutaneous fat volume (cm3) control 2.44 ± 0.12

metformin 2.37 ± 0.13

visceral fat volume (cm3) control 8.46 ± 0.39

metformin 7.02 ± 0.41**

food intake (g/day) control 24.8 ± 0.2 25.2 ± 0.4 25.0 ± 0.3

metformin 24.3 ± 0.5 25.2 ± 0.4 24.8 ± 0.4

water consumption (ml/day) control 51.1 ± 3.1 63.3 ± 2.8 49.1 ± 2.5

metformin 49.7 ± 5.4 57.4 ± 3.3 43.4 ± 1.8

Data are presented as mean ± S.E. n = 12 in each group.

**P<0.01 vs. control group.

doi:10.1371/journal.pone.0171293.t001

Metformin and fat oxidation in vivo
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Metformin is known to have a neutral effect on body weight or, based on the results of a

meta-analysis, to possibly decrease it by 1.1kg [24]. Metformin’s effects on body weight have

thus far mostly been discussed in relation to its anorexigenic effect in animal models [7, 8] and

human subjects [9, 10]. Indeed, metformin has been reported to reduce meal size without

altering the number of meals in obese db/db mice, suggesting that metformin modifies satia-

tion through the activation of circuitry in the brainstem, including the NUCB2/nesfatin-1 neu-

rons [25]. On the other hand, metformin has a beneficial effect on lipid metabolism [11]

through the activation of AMPK, the lowering of the level of serum triglyceride and the

Fig 3. Effects of metformin on plasma concentrations of glucose (A), insulin (B), lactate (C) and

pyruvate (D) in SD rats at 15 weeks old. Open bars denote control group and black bars denote metformin-

treated group. Data are presented as mean ± S.E. (n = 6 in each group). *P<0.05, **P<0.01 vs. control group.

doi:10.1371/journal.pone.0171293.g003

Fig 4. Effects of metformin on respiratory quotient (RQ, A) and energy expenditure (EE, B) in SD rats at 15

weeks old. Open bars denote control group and black bars denote metformin-treated group. Data are presented as

mean ± S.E. (n = 10 in each group). *P<0.05, ***p<0.001 vs. control group.

doi:10.1371/journal.pone.0171293.g004

Metformin and fat oxidation in vivo
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Fig 5. Fat oxidation-related gene expressions in the liver of SD rats at 15 weeks old. A; Cpt1, B; Acs, C;

Acad, D; Pdk expression corrected by Gapdh expression. Open bars denote control group and black bars

denote metformin-treated group. Data are presented as mean ± S.E. (n = 6 in each group). *P<0.05,

**P<0.01 vs. control groups.

doi:10.1371/journal.pone.0171293.g005

Fig 6. The protein expressions of pAMPK and pACC in the liver of SD rats at 15 weeks old.inhibo A;

Western blot analysis, B; Densitometric quantification. Open bars denote control group and black bars denote

metformin-treated group. Data are presented as mean ± S.E. (n = 3 in each group). *P<0.05 vs. control groups.

doi:10.1371/journal.pone.0171293.g006

Metformin and fat oxidation in vivo
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elevation of the HDL-cholesterol concentration. In fact, a previous study showed the direct

enhancement of fat oxidation in skeletal myotubes and adipocytes in response to metformin

treatment in vitro [13, 26]. Furthermore, metformin is related to adaptive thermogenesis such

as diet-induced thermogenesis [19, 20], which plays an important role in the regulation of

body weight and body composition [27]. However, although it’s quite promising that the

administration of metformin bring about a reduction of fat amount by a facilitation of fat oxi-

dation, there has been no report so far demonstrating metformin’s effect on fat oxidation

together with its effect on body fat reduction in vivo. In this context, we tried to clarify the ben-

eficial effects of metformin on body weight, which have been investigated and discussed

directly in regard to fat oxidation in vivo.

Fig 7. Adaptive thermogenesis-related gene expressions in the brown adipose tissue and skeletal muscle of SD rats at

15 weeks old. A; UCP1, B; UCP3 expression corrected by Gapdh expression. Open bars denote control group and black bars

denote metformin-treated group. Data are presented as mean ± S.E. (n = 6 in each group). *P<0.05 vs. control groups.

doi:10.1371/journal.pone.0171293.g007

Fig 8. Pyruvate tolerance test in SD rats at 15 weeks old. Data are presented as mean ± S.E. (n = 6 in

each group). Paired t-test was used for the comparison between groups. Open circle and dotted line; control

group, closed circle and solid line; metformin-treated group. *P<0.05 vs. the value of control group at each

time point.

doi:10.1371/journal.pone.0171293.g008

Metformin and fat oxidation in vivo
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The administration of metformin significantly suppressed the post-prandial elevation of

glucose concentration in both healthy subjects and diabetic patients through the amelioration

of insulin resistance or the direct augmentation of anaerobic glycolysis, as indicated by the ele-

vation of plasma lactate concentration. Furthermore, the inhibitory effect of metformin on

gluconeogenesis might have been involved which was demonstrated in pyruvate tolerance

test in the present study. The suppression of the post-prandial increase of triglyceride levels

observed in diabetic patients could largely be attributable to the amelioration of insulin resis-

tance and the activation of lipoprotein lipase[28]. While it is feasible that metformin might

directly suppress the production of triglyceride and activate fat oxidation through the activa-

tion of AMPK in the liver, the increase of post-prandial RQ in response to metformin treat-

ment probably reflects the enhancement of anaerobic glycolysis and does not support this

hypothesis.

On the other hand, metformin was found to suppress RQ significantly in the fasted state in

both healthy subjects and diabetic patients. This result is in line with a previous study of obese

diabetic patients, which demonstrated that a 16-week period of metformin treatment brought

about approximately 3 kg of weight loss, most of which was accounted for by body fat mass–

despite the absence of change in EE [5]. In animal studies, it was also demonstrated that RQ in

the fasted state significantly decreased without any change in EE in response to metformin

treatment, thus confirming the results in human studies. At the time of writing, effects of met-

formin on energy metabolism, especially on RQ, have rarely been discussed, with the exception

of a few reports which demonstrated that there was no change in RQ after metformin treat-

ment in normal weight healthy subjects [29] and diabetic patients [30]. The discrepancy in

these results could possibly be attributed to the differences in the methods that were used to

measure and evaluate of RQ. Indeed, in the present study, we measured RQ separately during

fasted and post-prandial conditions. In contrast, the previous studies measured the average

RQ for a whole day. In a whole-day measurement, the increased RQ after meals might cancel

the decrease in RQ in response to fasting. The decrease of fasting RQ suggests the dominant

utilization of fat as an energy source during this period.

In line with the results of energy metabolism, animal studies showed that the administra-

tion of metformin led to a reduction of body fat independent of its anorexigenic effects. Thus,

it is feasible that beneficial effects of metformin on body weight can largely be attributed to its

effects on fat metabolism and oxidation in this study. Metformin’s effects on fat oxidation

coincide naturally with its activation of AMPK in the liver, and the inactivation of ACC by

AMPK results in a decrease in malonyl-CoA, higher CPT-1 activity and the enhancement of

fatty acid oxidation [18]. In the present study, we clearly demonstrated that metformin signifi-

cantly enhanced the phosphorylation of AMPK leading to the phosphorylation and suppres-

sion of ACC, then increased the levels of fat oxidation-related enzymes such as acyl-CoA

synthase, CPT-1 and acyl-CoA dehydrogenase. These results account well for its fat oxidation

mechanisms. PDK is a kinase enzyme which inactivates the pyruvate dehydrogenase enzyme

through its phosphorylation (using ATP), which leads to the suppression of oxidative glycoly-

sis. Thus, the enhancement of PDK by metformin, which was observed in the present study,

confirms a potential shift of energy source from glycolysis to fat oxidation. On the other hand,

metformin’s effects on UCP-1 and UCP-3 shown in the present study are in line with previous

reports [20, 27], and could well explain the reduction of visceral fat taking an enhancement of

diet-induced thermogenesis (DIT) during dark phase. In this aspect, a slight but significant

decrease of RQ during dark phase can be reflected by the increase of adaptive thermogenesis

in this period. An absorptive RQ decrease is the different result from that in human study in

which post-prandial RQ was enhanced by metformin treatment. This discrepant results can be
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partly explained by the difference of BAT amount, which is abundant in mice and scarce in

adult human [31].

This study is associated with several limitations. First, the end of the light phase (19:00) under

restricted feeding conditions in which rats were only fed during the dark phase does not correctly

coincide with the fasting state in humans because the motility of the gut and the absorption of

nutrients are quite different between in these 2 species. These differences may explain the differ-

ences between humans and rats in the fasting lactate concentration and post-prandial RQ, as well

as the similar enhancement of fat oxidation-related enzyme expressions during both of the states

in rats. Second, because it is complicated and labor intensive to directly measure insulin sensitiv-

ity, we instead measured the serum insulin concentrations to estimate insulin sensitivity. Third,

we measured fat oxidation-related enzyme expressions in the liver instead of in adipose tissue. A

previous report, which used a liver perfusion technique in a diet-induced overweight in vivo rat

model, demonstrated that metformin treatment significantly decreased body weight and sup-

pressed the cumulative triglyceride output from the liver, suggesting a change of hepatic fatty

acid metabolism from lipogenesis toward fat oxidation [32]. This finding was in line with our

results. Furthermore, with regard to cross-talk between liver and adipose tissue, there are many

literatures that reported a decrease of visceral fat and an acceleration of fat oxidation related

enzymes in the liver simultaneously [33, 34]. Thus, metformin is capable of accelerating the oxi-

dation of fat in the liver, thereby leading to a decrease of visceral fat or body weight. Finally, the

dose of metformin that was used for rats was around 250mg/kg per day, with water consumption

taken into consideration. While this dose is similar or somewhat smaller than the dose of previ-

ous reports in which metformin was administered to rats through their drinking water [35, 36], it

is estimated to be approximately 10 times higher than that in human subjects (about 30mg/kg

per day). The concern for lactic acidosis, however, has been swept because of the similar pH levels

in arterial blood of rats with or without metformin treatment (data not shown).

In conclusion, it is feasible that the long-term administration of metformin brought about a

shift of the fuel source for fat oxidation in both human and animal experiments, and a signifi-

cant decrease of visceral fat volume was noted in animal experiments. Furthermore, metfor-

min treatment enhanced DIT-related UCPs expressions, which may have partly contributed to

the reduction of visceral fat observed in animal experiments. We demonstrated in vivo that the

administration of metformin may cause visceral fat reduction through a possible mechanism

of fat oxidation enhancement that is independent of its appetite suppressive effect.
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