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Summary: Cancer population studies based on cancer registry databases are widely conducted to address various

research questions. In general, cancer registry databases do not collect information on cause of death. The net survival

rate is defined as the survival rate if a subject would not die for any causes other than cancer. This counterfactual

concept is widely used for the analyses of cancer registry data. Perme, Stare, and Estève (2012) proposed a non-

parametric estimator of the net survival rate under the assumption that the censoring time is independent of the

survival time and covariates. Kodre and Perme (2013) proposed an inverse weighting estimator for the net survival

rate under the covariate-dependent censoring. An alternative approach to estimating the net survival rate under

covariate-dependent censoring is to apply a regression model for the conditional net survival rate given covariates.

In this paper, we propose a new estimator for the net survival rate. The proposed estimator is shown to be doubly

robust in the sense that it is consistent at least one of the regression models for survival time and for censoring time.

We examine the theoretical and empirical properties of our proposed estimator by asymptotic theory and simulation

studies. We also apply the proposed method to cancer registry data for gastric cancer patients in Osaka, Japan.
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1. Introduction

To address various research questions, many cancer population studies utilize cancer registry

databases. The CONCORD study addressed differences in cancer survival rates among

nations in various cancer types, including breast, colon, gastric, prostate, and so on (Coleman

et al., 2008). Rachet et al. (2009) examined changes of the survival rates for patients

diagnosed each year over time in England and Wales with various common cancers. These

studies used data from cancer registries. In general, cancer registries do not collect data

on the causes of death. It may lead to difficulty in addressing research questions by using

the standard survival analysis techniques since survival times recorded in cancer registry

data may not be due to cancer death. For example, Coleman et al. (2008) presented relative

survival rates in order to make comparisons among nations by adjusting for differences in

survival rates of general populations. Relative survival rates were also employed in Rachet

et al. (2009) to adjust for differences in baseline mortality rates over time in order to make

more relevant comparisons for cancer survival rates over time.

As done by Coleman et al. (2008) and Rachet et al. (2009), relative survival rates are widely

used for analyses of cancer registry data. The relative survival rate is defined as the ratio

of the survival rate due to any cause to the survival rate for the general population. Non-

parametric estimators by Ederer, Axitell, and Cutler (1961) and Hakulinen (1982) are widely

used in practice, and in this paper we refer to them as ED1 and HK estimators, respectively.

An alternative to the relative survival rate is the net survival rate, which is defined as the

survival rate if each subject would not die due to causes other than cancer. In general, the

relative survival rate cannot be interpreted as a survival rate and does not agree with the

net survival rate. Recently, Perme, Stare, and Estève (2012) proposed a simple estimator,

which we here call the Pohar Perme (PP ) estimator, for the net survival rate based on cancer

registry data. Perme et al. (2012) utilized two survival times for their arguments: time-to-
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death due to cancer and that due to other causes. The PP estimator consistently estimates

the net survival rates under the assumption that the two survival times are conditionally

independent given covariates. In general, neither ED1 nor HK is consistent for the net

survival rate under the conditional independence assumption: (unconditional) independence

between the two survival times is required for consistency. Due to its simplicity and fewer

required assumptions, the PP estimator has been of practical use in cancer registry data

analyses (Monnereau et al., 2013).

Although the PP estimator relies on weaker assumptions than the other methods on

independence between two survival times, it still relies on the assumption that the two

survival times are independent of the censoring time. However, as pointed out by Hakulinen

(1982), this assumption may not hold in practice. In analyses of cancer registry data, the

end of follow-up is often administrative (i.e., independent of covariates), but the entry of a

subject may be dependent on covariates. If this is the case, the dependence of entry time on

covariates induces covariate-dependent censoring, which is often called informative censoring

(Danieli et al., 2012). One approach to estimating the net survival rate in the presence

of informative censoring is to apply a regression model for the net survival rate. Various

regression methods have been developed, including the Cox-type regression (Hakulinen and

Tenkanen, 1987; Estève et al., 1990; Sasieni, 1996; Perme, Henderson and Stare, 2009), the

additive hazards model (Lambert et al., 2005; Cortese and Scheike, 2008), and spline-based

non-proportional hazards models (Bolard et al., 2002; Giorgi et al., 2003). If a regression

model for the net survival rate is correctly specified, by averaging the conditional net survival

rate out over an entire population, one can estimate the (marginal) net survival rate. We

call these regression-based methods the outcome regression (OR) estimator. In contrast to

the above regression-based approaches, an alternative method proposed recently by Kodre

and Perme (2013) is based on inverse weighting, and here we call it the weighted Pohar
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Perme (wPP ) estimator in the present paper. The weight is defined by the conditional

survival function for the censoring time given covariates, and the wPP estimator relies on a

regression model for the censoring time. If the regression model for the censoring time holds,

the wPP estimator consistently estimates the net survival rate.

The OR and wPP estimators provide two ways to estimate net survival rates, and they

are complementary to each other. The former is based on modeling time-to-death due to

cancer (net survival) and the other is based on modeling censoring time. In causal inference

literatures, doubly robust estimators have been of great interest and intensively examined

(Lunceford and Davidian, 2004). Motivated by the development of doubly robust estimators

in causal inference literatures, we propose an estimator by hybridizing the two estimators of

OR and wPP that possesses advantages of the two estimators simultaneously. Our estimator

has double robustness in the sense that if at least one of two models for net survival rate

and censoring time is correctly specified, the proposed estimator consistently estimates the

marginal net survival rate and then has an advantage over OR and wPP for practical use.

We denote the proposed doubly robust estimator as the DR estimator.

The rest of the paper is organized as follows. In Section 2, we introduce cancer registry

data and some notations. In Section 3, we introduce data subject to covariate-dependent

(informative) censoring and describe the DR estimator, and then summarize the theoretical

properties of the DR, including consistency and asymptotic normality. In Section 4 we report

the results of a simulation study, and in Section 5 we apply the proposed method to a

real data from a cancer registry in Osaka prefecture, Japan. Some discussions are made in

Section 6. We construct the asymptotic variance estimator in Appendix, and all details on

the theoretical developments and complicated formula are placed in Web Appendices.
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2. Preliminary

2.1 Cancer registry data

Cancer registry data often records gender, age, and year when a subject is diagnosed as cancer

for each subject. Let Z be a vector of such baseline covariates. In cancer registry, cause

of death is not usually recorded. Let TO be time-to-death due to any cause. We suppose

that TO may be right-censored by the potential censoring time C. Then we observe only

T = min(TO, C) and ∆ = I(TO 6 C). We suppose n i.i.d. copies of the triple (T, ∆, Z)

are available, which are denoted by (Ti, ∆i, Zi) with the subscript i for the ith subject for

i = 1, 2, · · · , n.

2.2 Analysis of the cancer registry data under independent censoring

To describe statistical methods for estimating net survival rates, we introduce a pair of

latent time-to-death. Let TE be the time-to-death due to a cancer from the date when the

cancer was diagnosed, and TP be the time-to-death due to causes other than the cancer.

We suppose TO = min(TP , TE). The survival function for TE conditional on Z is denoted by

SE(t|Z) = P (TE > t|Z). Corresponding hazard and cumulative hazard functions are denoted

by λE(t|Z) and ΛE(t|Z), respectively. Those for TP and TO are defined in a similar way with

the subscript ”P” and ”O”, respectively.

The net survival rate at time t is defined as SE(t) = P (TE > t), which is the survival rate

at t if a subject diagnosed as a cancer would not die due to causes other than the cancer. This

is an alternative quantity to the relative survival rate SO(t)/SP (t), where SO(t) = P (TO > t)

and SP (t) = P (TP > t). In this paper, we focus on the estimation of the net survival rate.

Define the counting process for the observed failure time TO and the at-risk process by

N(t) = I(t > T, ∆ = 1) and Y (t) = I(t 6 T ), respectively. Note that we use the subscript

i for the observation of the ith subject for any quantities. For example, we denote N(t) and

Y (t) for an ith individual by Ni(t) and Yi(t), respectively. The PP estimator (Perme et al.,
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2012) is defined as

Λ̂PP
E (t) =

n∑
i=1

∫ t

0

1
SP (u|Zi)∑n

j=1
Yj(u)

SP (u|Zj)

{dNi(u) − Yi(u)dΛP (u|Zi)}. (1)

In the PP estimator and other estimators for the net survival function, which we will discuss

later, the conditional population survival function SP (t|Z) is calculated by an external

database for population mortality and is regarded as known. The PP estimator is a consistent

estimator for the cumulative hazard function ΛE(t) under the following conditions (C1) and

(C2):

(C1) TE ⊥ TP |Z

(C2) C ⊥ {TE, TP , Z},

where for any events A, B, and C, A ⊥ B|C implies the conditional independence of A and

B given C. In this paper, we refer to condition (C2) as the independent censoring.

3. Inference under covariate-dependent censoring

3.1 Covariate-dependent censoring in cancer registry data

In analyses of cancer registry data, covariate-dependent censoring (often called informative

censoring in literatures) may arise in practice (Hakulinen, 1982; Kodre and Perme, 2013). We

follow the situation discussed by Kodre and Perme (2013). Consider two potential censoring

times G and C̃ and suppose C = min(G, C̃). We denote G and C̃ for the ith individual by

using the subscript i, such as in Gi and C̃i. We suppose that Gi is observed for all subjects.

Consider the following conditions:

(C3-a) G ⊥ {TE, TP}|Z

(C3-b) C̃ ⊥ {TE, TP , Z}.

As argued in Kodre and Perme (2013), this situation often arises in practice. In their

arguments, G is a potential follow-up time, which is the time from the entry to the end

of follow-up, and C̃ is a time to censoring due to any reasons other than the end of follow-
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up. Since the entry time of a subject depends on the covariates Z but the end of follow-up is

often administrative, it may be natural that G depends on the covariates Z. The conditions

(C3-a) and (C3-b) do not imply the condition (C2). Then the PP estimator loses its validity

under (C3-a) and (C3-b).

3.2 Existing inference procedures under covariate-dependent censoring

Kodre and Perme (2013) proposed the following estimator,

Λ̂wPP
E (t) =

n∑
i=1

∫ t

0

1

ŜG(u|Zi)SP (u|Zi)∑n
j=1

Yj(u)

ŜG(u|Zj)SP (u|Zj)

{dNi(u) − Yi(u)dΛP (u|Zi)}, (2)

where ŜG(t|Z) is an estimator of SG(t|Z) = P (G > t|Z). The estimator (2) is defined

by replacing the counting process and the at-risk process in the PP estimator with their

inversely weighted versions, respectively. We call the estimator (2) the weighted Pohar Perme

(wPP ) estimator. To realize the wPP estimator, we need to model SG(t|Z) with a regression

model. In this paper, we employ the Cox regression for the censoring time G,

λG(t|Z) = λG(t) exp (βT
GZ), (3)

where λG(t) is a baseline hazard function and βG is a vector of regression coefficients. One can

estimate βG and ΛG(t) =
∫ t

0
λG(u)du by the standard maximum partial likelihood method

and the Breslow estimator, which are denoted by β̂G and Λ̂G(t), respectively. Then, SG(t|Z) is

estimated by ŜG(t|Z) = exp {−Λ̂G(t) exp (β̂T
GZ)}. As suggested in Kodre and Perme (2013),

the wPP estimator consistently estimates the net cumulative hazard function ΛE(t) if the

conditions (C1), (C3-a), and (C3-b) hold and the model for SG(t|Z) is correctly specified.

Alternatively to the wPP estimator, using a regression model for TE, the net cumulative

hazard function ΛE(t) is estimated by

Λ̂OR
E (t) =

∫ t

0

∑n
i=1 ŜE(u|Zi)dΛ̂E(u|Zi)∑n

j=1 ŜE(u|Zj)
(4)
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or,

Λ̂OR
E (t) = − log

1

n

n∑
i=1

ŜE(t|Zi), (5)

where ŜE(t|Z) and Λ̂E(t|Z) are estimators of SE(t|Z) and ΛE(t|Z), respectively, based on

a regression model for TE. We call Λ̂OR
E (t) the Outcome Regression (OR) estimator. If the

conditions (C1), (C3-a) and (C3-b) hold and the regression model for the estimation of

SE(t|Z) is correctly specified, the OR estimator is a consistent estimator of ΛE(t).

Many studies have proposed inference procedures of regression models for TE. For example,

inference of the Cox-type model λE(t|Z) = λE(t) exp(βT Z) was discussed by Sasieni (1996)

and Perme et al. (2009), where λE(t) is an unspecified baseline hazard function and β is a

regression coefficient vector. Alternatively, one can employ some non-proportional hazards

models such as the additive hazards model (Cortese and Scheike, 2008). On the other hand,

there are disadvantages to the use of the regression models for TE. One disadvantage is that

such models require special softwares. Further disadvantage is that tools helpful for model

identification, such as goodness-of-fit tests, are less developed. We introduce an alternative

method to overcome these disadvantages. Under the condition (C1), it holds that

SE(t|Z) =
SO(t|Z)

SP (t|Z)
. (6)

We note that the standard relative survival rate is defined as SE(t) = SO(t)/SP (t), which is

based on marginal probabilities. On the other hand, the equation (6) is based on conditional

probabilities given covariates, and implies that the conditional version of the relative survival

rate can be regarded as the conditional net survival rate under the condition (C1). This

conditional relative survival rate (6) is useful to estimate ΛE(t). One can estimate ΛE(t)

with (4) or (5) by estimating SE(t|Z) with ŜO(t|Z)/SP (t|Z) or ΛE(t|Z) with Λ̂O(t|Z) −

ΛP (t|Z), where SP (t|Z) is extracted from an external database for a general population; we

are available SP (t|Z) for t = 1, 2, · · · which are recorded in the external databases, such as a

life-table, and get it for other t by linear extrapolation, and ŜO(t|Z) is based on a regression
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model for TO. To estimate SO(t|Z), noting that the data (T, ∆, Z) are the standard right-

censored data for TO, one can employ any regression models for the standard right-censored

data, which have been extensively developed. Here, we employ the Cox regression model for

TO,

λO(t|Z) = λO(t) exp (βT
OZ), (7)

where λO(t) is a baseline hazard function and βO is a vector of regression coefficients. One can

estimate βO and ΛO(t) =
∫ t

0
λO(u)du by the standard maximum partial likelihood method

and the Breslow estimator, which are denoted by β̂O and Λ̂O(t), respectively, and SO(t|Z) is

estimated by ŜO(t|Z) = exp {−Λ̂O(t) exp (β̂T
OZ)}. Then, ΛE(t|Z) is estimated by Λ̂E(t|Z) =

Λ̂O(t) exp (β̂T
OZ)−ΛP (t|Z). If the regression model for SO(t|Z) is correctly specified, the OR

estimator is consistent. For the model (7), various techniques for model-identification have

been developed (Lin, 1991; Lin and Wei, 1991; Lin, Wei and Ying, 1993 among others). In

particular, the model-checking procedure based on the cumulative martingale residuals by

Lin et al. (1993) can be easily implemented with PHREG procedure in SAS (SAS institute)

and timereg package in R (Martinussen and Scheike, 2006). Then we can identify a model

more accurately than relying on a model for TE.

3.3 Doubly robust estimator

Finally, we propose a new estimator of double robustness by combining ideas of the wPP

and OR estimators. The DR estimator is defined as

Λ̂DR
E (t) = Λ̂wPP

E (t) − Γ̂(t) + Λ̂OR
E (t), (8)

where

Γ̂(t) =

∫ t

0

∑n
i=1

I(Gi>u)

ŜG(u|Zi)
ŜE(u|Zi)dΛ̂E(u|Zi)∑n

j=1
I(Gj>u)

ŜG(u|Zj)
ŜE(u|Zj)

. (9)

The first and third terms of the right-hand side of (8) are the wPP estimator (2) and the OR

estimator (4), respectively. Note that the second term (9) is regarded as the inverse-weighted
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version of the OR estimator (4). Then, if the model for SG(t|Z) is correctly specified, the

second and third terms of the right-hand-side of (8) converge to the same limit and are

canceled each other. Therefore, the DR estimator is asymptotically equivalent to the wPP

estimator, which is consistent. On the other hand, when the model SO(t|Z) correctly specified

Pr(t < TO|Z), the second term Γ̂(t) is asymptotically equivalent to

n∑
i=1

∫ t

0

1

ŜG(u|Zi)SP (u|Zi)∑n
j=1

Yj(u)

ŜG(u|Zj)SP (u|Zj)

Yi(u)dΛE(u|Zi).

Then the first and second terms of (8) are asymptotically equivalent to

n∑
i=1

∫ t

0

1

ŜG(u|Zi)SP (u|Zi)∑n
j=1

Yj(u)

ŜG(u|Zj)SP (u|Zj)

dMi(u),

where Mi(t) = Ni(t) −
∫ t

0
Yi(u){dΛE(u|Zi) + dΛP (u|Zi)} is the counting process martingale

for Ni(t). Then, from the standard counting process martingale arguments (Fleming and

Harrington, 1991), it converges in probability to 0 and then (8) has the same limit as the

OR estimator, which is consistent in this case. Thus, the DR estimator (8) consistently

estimates the net cumulative hazard function ΛE(t) if at least one of SG(t|Z) and SO(t|Z)

is correctly specified. That is, the DR estimator has a double robustness. A formal proof

of the double robustness is presented in Web Appendix A. In general, Λ̂DR
E (t) converges in

probability to some limit, which is denoted by Λ∗
E(t). In Web Appendix B, we show that

n1/2
{

Λ̂DR
E (t) − Λ∗

E(t)
}

has a normal distribution asymptotically, and its asymptotic variance

can be consistently estimated by n−1
∑n

i=1 k̂DR
i (t; θ̂)2, where the definition of k̂DR

i (t; θ̂) is

given in Appendix. Due to the double robustness, Λ∗
E(t) agrees with ΛE(t) if at least one of

SG(t|Z) and SO(t|Z) is correctly specified. Then, one can construct a pointwise confidence

interval of ΛE(t) for a given t according to the asymptotic normality.

4. Simulation study

We conducted a simulation study to examine the behavior of the proposed estimator. We

considered three covariates, age, gender, and year, which were the age at diagonosis, the
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gender, and the year of diagnosis. Age and gender were generated from the normal dis-

tribution N(60, 102) and the Bernoulli distribution B(1/2), respectively. We generated the

potential follow-up time G from the exponential distribution with hazard rate λG(t|Z) =

0.12 exp{log 0.7×st(age)+log 1.7×gender+log 0.7×st(age)2}, and then year was calculated

by ef − G, where st(age) = (age − 60)/10 and ef was the date of the end of the follow-up

period. We considered three settings in generating TE. The failure time TE was generated

from the exponential distribution with the hazard rate λE(t|Z) = 0.1 exp(βT Z), where

β = (log 2, log 0.5, log 2)T , and Z was as follows;

Dataset 1 : Z = {st(age), gender, st(age)2}T

Dataset 2 : Z = {st(age), gender, st(age) × gender}T

Dataset 3 : Z = {st(age), gender, st(age)2 × gender}T .

To calculate SP (t|Z), we employed the life-table based on the National Cancer Center in

Japan. It records SP (t|Z) for t = 1, 2, · · · , and for other t, we extrapolated linearly. We

ganarated TP from this model, asuuming that TE and TP were conditionally independent

given the covariates Z. The potential censoring time C̃ was generated from the uniform

distribution from 0 to 50. We set the number of subjects n = 1, 000, and 1,000 datasets were

simulated. The true net survival function SE(t) = EZ [exp {−tλE(t|Z)}] was calculated by

20, 000−1
∑20,000

m=1 exp {−tλE(t|Zm)}, where Zm was the mth sets of covariates.

In analyses, we fitted the model (3) for G with G1 : Z = {st(age), gender, st(age)2} or

G2 : Z = {st(age), gender}T for G. In all the datasets, the model with G1 was correctly

specified, and the model with G2 was misspecified. For each dataset, we fitted the model (7)
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for TO with the following O1 or O2;

Dataset 1 O1 : Z = {st(age), gender, st(age)2}T

O2 : Z = {st(age), gender}T

Dataset 2 O1 : Z = {st(age), gender, st(age) × gender}T

O2 : Z = {st(age), gender}T

Dataset 3 O1 : Z = {st(age), gender, st(age)2 × gender}T

O2 : Z = {st(age), gender}T .

In each dataset, the model O1 held and O2 was misspecified. We estimated the net survival

rate by the DR estimator with combination of O1 or O2 with G1 or G2. In Analysis 1,

we employed G1 and O1 and then both models were correctly specified. In Analysis 2, we

employed G2 and O1, with which the model for G was misspecified and that for TO was

correctly specified. In Analysis 3, we employed G1 and O2, with which the model for G was

correctly specified and that for TO was misspecified. In Analysis 4, we employed G2 and O2,

neither of which was correctly specified. We evaluated empirical biases, mean squared errors

(MSE), and coverage probabilities (CP) for 5-year, 7-year, and 10-year net survival rates for

the DR, wPP , OR, and PP estimators.

The results for Datesets 1, 2, and 3 are summarized in Tables 1, 2, and 3, respectively.

Except for the result for t = 10 in Table 1, the proposed DR estimator worked as expected.

That is, we observed that

1) In Analysis 1, as expected, the biases were negligible in the DR, wPP , and OR estimators,

and the PP had a considerable bias in all Datasets. The OR estimator had the smallest MSE.

2) In Analysis 2, the biases and MSEs for the DR and OR estimators were smaller than

those for the wPP and PP estimators.

3) In Analysis 3, the biases and MSEs for the DR and wPP estimators were smaller than
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those for the others.

4) The DR estimator had only negligible biases if at least one of models (3) and (7) was

correctly specified.

5) Empirical coverage probabilities of the DR estimator were close to the nominal level of

95% when at least one of the models was correctly specified.

6) As seen in Analysis 4, the DR estimator did not necessarily outperform when both models

were misspecified.

On the other hand, the result for t = 10 in Table 1 indicated that the OR estimator

outperformed the DR estimator in all the cases including Analysis 3, in which the OR

estimator was misspecified. Whereas the DR and wPP estimators had the biases smaller

than the OR estimator as expected, the OR estimator was the best performance with respect

to MSEs. Furthermore, we observed that in Analysis 4 (both models were misspecified), the

DR estimator had substantially larger biases and MSEs than the OR estimator. To examine

why the DR estimator did not work well, we checked the weights in inverse weighting when

the model was misspecified. There were extremely large weights SG(t|Z)−1 at t = 10; the

weights ranged from 1.29 to 58.10 at t = 10, whereas they ranged from 1.15 to 8.40 at t = 5

and from 1.20 to 19.00 at t = 7 in Dataset 1. In Datasets 2 and 3, these ranges were similar

to those in Dataset 1. Poor performance of the doubly robust estimators due to extremely

large weights were reported in the causal inference (Kang and Schafer, 2007), and then we

speculate that the poor performance of the proposed DR estimator at t = 10 in Table 1

was due to the presence of extremely large weights. Although, in general, our DR estimator

has advantages over the other methods, it is recommended to check the distribution of the

weights in practice.

[Table 1 about here.]

[Table 2 about here.]
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[Table 3 about here.]

5. Example

We apply the proposed method to the population-based cancer registry data in Osaka

prefecture, Japan. This registry consisted of data on 2,023 male patients diagnosed as gastric

cancer with the adjacent organs from 1990 to 2000. We analyzed the follow-up data at 2000,

at which 1,739 patients had died and 284 patients had been censored. These data had two

covariates: age at diagnosis and the calender year at that time of diagnosis. We applied

Cox regression models (3) and (7) with standardized age, which is denoted by st(age), as

explanatory variables to estimate the distribution of the potential follow-up time and of the

failure time, respectively. To calculate the population mortality, we used a life-table from

the National Cancer Center in Japan.

Table 4 shows estimates of 5-year and 7-year net survival rates and their 95% confidence

intervals. Figure 1 plots the estimated net survival function by each estimator. For refer-

ence, the Kaplan-Meier estimator for SO(t) is also shown, which is referred to as OS. As

anticipated, the OS underestimates the net survival rate. The estimates and the confidence

intervals by the DR, wPP , and PP estimators were almost the same as each other. On

the other hand, the estimate by the OR estimator was lower than those by the others. We

applied the model-checking procedure based on the cumulative Martingale residuals (Lin

et al., 1993) for the models (3) and (7). In Figure 2, we showed the observed cumulative

Martingale residuals (left panel) and the observed score process (right panel) with their

randomly selected 50 simulated null processes and p-values of the supremum-type tests

for the model (3) (upper panel) and the model (7) (lower panel). Figure 2 indicates that

the Cox model (3) seems to fit well, whereas the Cox model (7) seems to be misspecified.

Corresponding to this observation, the OR estimator is far from the others. We observed that

the regression coefficient for age in the model (3) was not statistically significant, indicating
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that there is not a strong association between censoring time and age. Then the PP estimator

also may work well, and thus the PP and wPP estimates were close.

[Table 4 about here.]

[Figure 1 about here.]

[Figure 2 about here.]

6. Discussion

In this paper, we proposed the DR estimator that is applicable under covariate-dependent

censoring. Recently, the PP estimator has been gaining popularity in practice. However,

as observed in our simulation study, it may have considerable biases in the presence of

covariate-dependent censoring. Thus, methods valid under covariate-dependent censoring

are recommended to be applied in practice at least for sensitivity analysis. Due to its double

robustness, the DR estimator has potential for practical use.

While the net survival rate has a counterfactual nature, it is regarded as a survival rate

due to cancer. However, as observed in our example and reported previosly (Perme et al.,

2012), estimates for the net survival rate may not be a decreasing function. The relative

survival rate is an alternative to the net survival rate. From the definition of the relative

survival rate, it allows to be increasing and an useful alternative to the net survival rate. We

are developing a doubly robust estimator for the relative survival rate and will report the

results in the future.

In this paper, we employed the Cox regression for both the failure time and the censoring

time. In practice, the Cox regression may not fit well. In principle, one may utilize any

regression models, including semiparametric non-proportional hazards models such as the

additive hazards model (Lin and Ying, 1994) and the linear transformation model (Chen,

Jin and Ying, 2002). To this end, one would need to modify our variance estimators.
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As observed in our simulation studies, our proposed DR estimator does not necessarily

perform well when both models are misspecified. This phenomenon is observed in the doubly

robust estimator for the average causal effect in causal inference leteratures (Kang and

Schafer, 2007). In causal inference, several proposals have been made to overcome this

important issue (Cao, Tiatis and Davidian, 2009; Han and Wang, 2013). It is worth while

to develop estimators for the net survival rate, which are robust when both models are

misspecified.

7. Supplementary Materials

Web Appendices A and B referenced in Section 3, is available with this paper at the

Biometrics website on Wiley Online Library. A R source code implementing our proposed

and related methods is also available with a set of sample datasets.
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Appendix : Definition of the variance estimator

As introduced in Section 3, the variance of
√

n{Λ̂DR
E (t)−Λ∗

E(t)} is consistently estimated by

n−1
∑n

i=1 k̂DR
i (t; θ̂)2, where Λ∗

E(t) was defined in (A.4) of Web Appendix A and k̂DR
i (t; θ) is

obtained from kDR
i (t; θ), by replacing all theoretical quantities by their respective empirical
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counterparts. Although the definition of kDR
i (t; θ) is given in Web Appendix B, in this

appendix, we summarize the definition of k̂DR
i (t; θ) since it is very complicated. Define

NGi(t) = I(Gi 6 t), NG(t) = n−1
∑n

i=1 NGi(t), and N(t) = n−1
∑n

i=1 Ni(t). Let V
(r)
O (βO, t) =

n−1
∑n

i=1 Yi(t)Z
⊗r
i eβT

OZi and V
(r)
G (βG, t) = n−1

∑n
i=1 I(Gi > t)Z⊗r

i eβT
GZi for r = 0, 1, 2, where

Z⊗2 = ZZT , Z⊗1 = Z and Z⊗0 = 1. We denote Θ̂Gi(t; βG)T = {q̂Gi(t; βG), ŵGi(βG)T},

Θ̂Oi(t; βO)T = {q̂Oi(t; βO), ŵOi(βO)T}, and Θ̂i(t; βG, βO)T = {Θ̂Gi(t; βG)T , Θ̂Oi(t; βO)T}, where

ŵGi(βG) =

[∫ τ

0

{
−V

(2)
G (βG, u)

V
(0)
G (βG, u)

+
V

(1)
G (βG, u)⊗2

V
(0)
G (βG, u)2

}
dNG(u)

]−1

×
∫ τ

0

{
Zi −

V
(1)
G (βG, u)

V
(0)
G (βG, u)

}{
dNGi(u) − I(Gi > u)eβT

GZi

V
(0)
G (βG, u)

dNG(u)

}
,

q̂Gi(t; βG) =

{∫ t

0

−V
(1)
G (βG, u)T

V
(0)
G (βG, u)2

dNG(u)

}
ŵGi(βG)

+

∫ t

0

1

V
(0)
G (βG, u)

{
dNGi(u) − I(Gi > u)eβT

GZi

V
(0)
G (βG, u)

dNG(u)

}
,

ŵOi(βO) =

[∫ τ

0

{
−V

(2)
O (βO, u)

V
(0)
O (βO, u)

+
V

(1)
O (βO, u)⊗2

V
(0)
O (βO, u)2

}
dN(u)

]−1

×
∫ τ

0

{
Zi −

V
(1)
O (βO, u)

V
(0)
O (βO, u)

}{
dNi(u) − Yi(u)eβT

OZi

V
(0)
O (βO, u)

dN(u)

}
,

q̂Oi(t; βO) =

{∫ t

0

−V
(1)
O (βO, u)T

V
(0)
O (βO, u)2

dN(u)

}
ŵOi(βO)

+

∫ t

0

1

V
(0)
O (βO, u)

{
dNi(u) − Yi(u)eβT

OZi

V
(0)
O (βO, u)

dN(u)

}
.

Furthermore, we denote θT
O = (ΛO(.), βT

O), θT
O(t) = (ΛO(t), βT

O), θ̂T
O = (Λ̂O(.), β̂T

O), and θ̂T
O(t) =

(Λ̂O(t), β̂T
O). Similar notations are used for model (3) with the subscript G. In addition, we

denote θT = (θT
G, θT

O), θT (t) = (θT
G(t), θT

O(t)), θ̂T = (θ̂T
G, θ̂T

O), and θ̂T (t) = (θ̂T
G(t), θ̂T

O(t)). Then,

k̂DR
i (t; θ̂) is defined as

k̂DR
i (t; θ̂) = k̂wPP

i (t; θ̂G) − k̂C
i (t; θ̂) + k̂OR

i (t; θ̂O), (A.1)

where each term of the right-hand side above equation is given as follows:
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The first term of (A.1).

k̂wPP
i (t; θG) =

∫ t

0

Θ̂Gi(u; βG)T

Y
w
(u; θG)

{
dH

′
(u; θG) − Y

w′
(u; θG)dΛ̂wPP

E (u; θG)
}

+

∫ t

0

1

Y
w
(u; θG)

{
dHi(u; θG) − Y w

i (u; θG)dΛ̂wPP
E (u; θG)

}
,

where

Hi(t; θG) =

∫ t

0

dNi(u) − Yi(u)dΛP (u|Zi)

exp{−ΛG(u)eβT
GZi}SP (u|Zi)

, H(t; θG) = n−1

n∑
i=1

Hi(t; θG),

H
′
(t; θG) = n−1

n∑
i=1

∫ t

0

− ∂
∂θG(u)

exp{−ΛG(u)eβT
GZi}

exp{−ΛG(u)eβT
GZi}

dHi(u; θG),

Y w
i (t; θG) =

Yi(t)

exp{−ΛG(t)eβT
GZi}SP (t|Zi)

, Y
w
(t; θG) = n−1

n∑
i=1

Y w
i (t; θG),

and

Y
w′

(t; θG) =
∂

∂θG(t)
Y

w
(t; θG).

The second term of (A.1).

k̂C
i (t; θ) =

∫ t

0

Θ̂i(u; βG, βO)T

R(u; θ)

{
dB

(1)
(u; θ) − R

′
(u; θ)dΓ̂(u; θ)

}
+

∫ t

0

1

R(u; θ)

[
d{Θ̂Oi(u; βO)T B

(2)
(u; θ)} − Θ̂Oi(u; βO)T dB

(3)
(u; θ)

]
+

∫ t

0

1

R(u; θ)

{
dB(u|Zi; θ) − R(u|Zi; θ)dΓ̂(u; θ)

}
,

where

SE(t|Z; θO) =
exp{−ΛO(t)eβT

OZ}
SP (t|Z)

, ΛE(t|Z; θO) = ΛO(t)eβT
OZ − ΛP (t|Z),

Λ′
E(t|Z; θO) =

∂

∂θO(t)
ΛE(t|Z; θO),

R(t|Z; θ) =
I(G > t)

exp{−ΛG(t)eβT
GZ}

SE(t|Z; θO), R(t; θ) = n−1

n∑
i=1

R(t|Zi; θ),

R′(t|Z; θ) =
∂

∂θ(t)
R(t|Z; θ), R

′
(t; θ) = n−1

n∑
i=1

R′(t|Zi; θ),
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B(t|Z; θ) =

∫ t

0

R(u|Z; θ)dΛE(u|Z; θO), B(t; θ) = n−1

n∑
i=1

B(t|Zi; θ),

B
(1)

(t; θ) = n−1

n∑
i=1

∫ t

0

R′(u|Zi; θ)dΛE(u|Zi; θO),

B
(2)

(t; θ) = n−1

n∑
i=1

Λ′
E(t|Zi; θO)R(t + |Zi; θ),

and

B
(3)

(t; θ) = n−1

n∑
i=1

∫ t

0

Λ′
E(u|Zi; θO)dR(u + |Zi; θ).

The third term of (A.1).

k̂OR
i (t; θO) =

∫ t

0

Θ̂Oi(u; βO)T

SE(u; θO)

{
dF

(1)
(u; θO) − S

′
E(u; θO)dΛ̂OR

E (u; θO)
}

+

∫ t

0

1

SE(u; θO)

[
d{Θ̂Oi(u; βO)T F

(2)
(u; θO)} − Θ̂Oi(u−; βO)T dF

(3)
(u; θO)

]
+

∫ t

0

SE(u|Zi; θO)

SE(u; θO)

{
dΛE(u|Zi; θO) − dΛ̂OR

E (u; θO)
}

.

where

S ′
E(t|Z; θO) =

∂

∂θO(t)
SE(t|Z; θO), S

′
E(t; θO) = n−1

n∑
i=1

S ′
E(t|Zi; θO),

SE(t; θO) = n−1

n∑
i=1

SE(t|Zi; θO),

F
(1)

(t; θO) = n−1

n∑
i=1

∫ t

0

S ′
E(u|Zi; θO)dΛE(u|Zi; θO),

F
(2)

(t; θO) = n−1

n∑
i=1

Λ′
E(t|Zi; θO)SE(t|Zi; θO),

and

F
(3)

(t; θO) = n−1

n∑
i=1

∫ t

0

Λ′
E(u − |Zi; θO)dSE(u|Zi; θO).
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and the lower panels show the failure time; p-values pertain to the supremum-type tests.
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Table 4
Estimates of the 5-year and 7-year net survival rates and their 95% confidence intervals for patients diagnosed with

gastric cancer with adjacent organs in cancer registry data in Osaka.

5-year net survival rate 7-year net survival rate

DR 0.124(0.100,0.148) 0.142(0.090,0.194)
wPP 0.125(0.101,0.150) 0.146(0.091,0.200)
OR 0.115(0.094,0.135) 0.118(0.093,0.143)
PP 0.124(0.102,0.147) 0.143(0.114,0.172)


