2	Walking exercise combined with neuromuscular electrical stimulation of antagonist
3	resistance improved muscle strength and physical function for elderly people: A pilot
4	study
5	Improvement of muscle strength and physical function in elderly by walking exercise
6	combined with neuromuscular electrical stimulation of antagonist resistance: A pilot
7	study
8	
9	Ryuki Hashida ^{1*} , Hiroo Matsuse ¹ , Yoshio Takano ² , Masayuki Omoto ¹ , Takeshi Nago ¹
10	and Naoto Shiba ¹
11	
12	• ¹ Division of Rehabilitation, Kurume University Hospital, 67 Asahi-machi, Kurume,
13	Fukuoka 830-0011, Japan
14	• ² Department of Physical Therapy, School of Health Sciences at Fukuoka, International
15	University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka 831-8501, Japan
16	
17	*Ryuki Hashida: hashida_ryuuki@med.kurume-u.ac.jp

18	Hiroo Matsuse: matsuse_hiroh@kurume-u.ac.jp
19	Yoshio Takano: y-takano@iuhw.ac.jp
20	Masayuki Omoto: omoto_masayuki@med.kurume-u.ac.jp
21	Takeshi Nago: nago_takeshi@kurume-u.ac.jp
22	Naoto Shiba: nshiba@med.kurume-u.ac.jp
23	
24	Number of tables: 3
25	Number of figures: 2
26	
27	Short title: Walking with combined technique
28	
29	Abbreviations: ADL, activities of daily living ; CTR, control group; HTS, hybrid
30	training system; HTSW, HTS during aerobic walking exercise; MV, muscle volume;
31	TUG, Timed up and go test; 1RM, one-repetition maximum
32	
33	
34	

35	<i>Abstract</i> Both aerobic exercise and resistance exercise are recommended to enhance
36	health in elderly people. A hybrid training system (HTS), that provides resistance to the
37	motion of a volitionally contracting agonist muscle by electrically stimulating its
38	antagonist, was developed as a resistance exercise technique combining the benefits of
39	electrical stimulation and volitional contractions. We then applied this concept to
40	develop a novel training method using electrically stimulated eccentric contractions
41	during aerobic walking exercise (HTSW). This study was designed to evaluate the effect
42	of the new method on muscle strength and physical function by comparing it to
43	unenhanced walking exercise. 16 subjects (2 male, 14 female; age average, 67.2 ± 2.6)
44	were randomly divided into an HTSW group and a control group (CTR). They trained
45	using either HTSW or unenhanced walking exercise (CTR) for 30 minutes three times a
46	week for 12 weeks. Isokinetic knee extension/flexion torque, muscle volume (MV), a
47	one-leg standing test, a functional reach test, 10-meter maximum gait speed, timed up &
48	go test (TUG), and a 6-minute walking test were measured before and after the training
49	period. We compared the differences between pre-training and post-training using the
50	Wilcoxon signed rank test in each group. In the HTSW group, isokinetic knee extension

51	(12%)/flexion torque (18%), MV (8%), 10-meter maximum gait speed (9%), TUG
52	(26%), and 6-minute walking test (12%) significantly improved after the training period
53	In the CTR group, isokinetic knee flexion torque (15%), 10-meter maximum gait speed
54	(9%), TUG (22%), and 6-minute walking test (16%) had significantly improved after
55	the training period. HTSW may provide the benefits of both aerobic and resistance
56	exercise.
57	Keywords : elderly people, walking, muscle strength, electrical stimulation, exercise,
58	volitional contractions
59	

61 Introduction

62	Aging causes a decline in the level of physical function ¹⁾ . This decline often leads to
63	difficulties in locomotion, e.g walking, getting out of a chair, and stair climbing ²⁻⁴⁾ . It
64	may originate from disease, life style, psychosocial and socio-demographic factors,
65	genetic predisposition or a combination of the above ⁵⁾ . This decline leads to disability,
66	and elderly people with disabilities usually require nursing care at some point. The
67	Japanese Orthopaedic Association (JOA) has proposed the term "locomotive syndrome"
68	to designate a condition in people from high-risk groups with musculoskeletal disease
69	who are highly likely to require nursing care ⁶⁾ . Locomotive syndrome is caused by
70	weakening of the musculoskeletal organs such as bones, joints, and muscles, so exercise
71	is important for prevention ⁷⁾ . Walking, in particular, is one of the most basic exercises
72	that most elderly people can do safely. Walking is also one of the basic physical
73	activities of daily living and is associated with life expectancy ⁸⁾ . Gait speed is a general
74	indicator of physical function. Improving gait speed decreases the risk of falls ⁹⁾ and
75	fractures ¹⁰⁾ . Good walking ability is essential for the formation of a thriving society with
76	a long life expectancy. The Ministry of Health, Labor and Welfare in Japan provides

79 On the other hand, regional muscle strength is a predictor of mortality in elderly people¹¹⁾. Knee-extension strength correlated positively with ADL and the degree of 80 ADL disability decreases with increasing knee-extension strength¹²⁾. Resistance strength 81 82 training is recommended for elderly people in the American College of Sports Medicine¹³⁾. The minimum resistance training intensity to achieve muscle hypertrophy 83 and strength gain is 65% of the one-repetition maximum $(1RM)^{13,14}$. This exercise 84 85 intensity is often a problem for elderly people with illness (e.g. locomotorium diseases or heart disease). Neuromuscular electrical stimulation (NMES) is one of the more 86 87 effective training methods even though exercise intensity is relatively low, and is widely 88 used to lessen immobilization-associated muscle atrophy, strengthen muscles, and improve function in people with neuromuscular disabilities¹⁵⁻¹⁹⁾. The combined 89 90 application of electrical stimulation and volitional contractions is said to be more 91 effective than electrical stimulation or volitional contractions alone^{20,21}. A hybrid 92 training system (HTS) that resists the motion of a volitionally contracting agonist

93	muscle, with force generated by electrically stimulating the corresponding antagonist,
94	was developed as a technique to combine the application of electrical stimulation and
95	volitional contraction ²²⁻²⁴⁾ . Matsuse et al. reported that elbow flexion torque had
96	increased about 56%, and the muscle cross-sectional areas of the upper arm had
97	increased about 10%, as a result of HTS over an 8-week period; and those increases
98	were better than those produced by isotonic weight training and NMES ²²⁾ . Iwasaki et al.
99	studied the benefits of HTS compared to conventional weight training, with 15 RM
100	loads, for increasing muscle strength around the knee at both slow and fast joint speeds
101	(at 30 and 180°/sec), and reported that HTS is comparable to weight training with the
102	exception of high-speed contractions (HTS + 25 - 28%, WT + 24 - 33%, at $30^{\circ}/\text{sec}$) ²³⁾ .
103	In elderly people, HTS has been shown to produce improvements in muscle strength by
104	about 40% and mass by about 10%, which is as good as or better than those achieved
105	with a knee flexion machine used at 30% of maximum voluntary contraction (MVC) ²⁵⁾ .
106	One of the major advantages of HTS is that ES can be combined with voluntary activity
107	simultaneously. We have shown that HTS could be combined with aerobic cycling
108	exercise simultaneously ^{26,27)} . Walking is one of the most basic moderate intensity

109	physical activities for elderly people. Consequently, we then developed a new exercise
110	device that would enable us to perform muscular strengthening exercise using HTS
111	while walking (HTSW).
112	The purpose of the present study was to examine the effects of HTSW with regards
113	to muscle strength and physical function in elderly people as a pilot study.
114	
115	Subjects and Methods
116	Subjects
117	The Ethics Committee of Kurume University approved the clinical design of this
118	study protocol (approval ID: 13006). Subjects who independently lived at home were
119	recruited using posters displayed in local community centers in Okawa City, Fukuoka,
120	Japan. The subjects were given oral and written explanations of the study including the
121	objective of the training method and its risks, and then asked to sign consent forms for
122	participation in this research. They were assured that they could quit at any time if they
123	wished. The exclusion criteria for the training intervention were cases of acute
124	orthopedic problems, cerebrovascular, or heart disease within the past year, as well as

125	dementia. Subjects underwent medical and musculoskeletal examinations conducted by
126	a physician. The 16 subjects (2 males and 14 females), with an average age of 67.2 \pm
127	2.6 (ranging 62-72 years), were randomly divided by a blinded assessor using a
128	computer into two groups: the HTSW group and a control group (CTR). The HTSW
129	group, who trained with HTS while walking, consisted of 8 subjects (1 male and 7
130	females) with an average age of 67.4 ± 3.4 (ranging 62-72 years), while the CTR group
131	included 8 subjects who trained by walking only (1 male and 7 females) with an average
132	age of 67.0 ± 1.9 (ranging 65-71 years).
133	

134 *Training protocol*

The walking exercise was conducted for 30 minutes per session, 3 times a week for 12 weeks (a total of 36 sessions). Each session was separated by an interval of at least 48 hours. All the sessions were conducted at the University Laboratory. The subjects were instructed to carry on their ordinary daily lives. They were prohibited from participating in new activities for the purpose of resistance movement and physical strength improvement. During the exercise, an assistant was always present to provide

141	guidance and monitoring in order to ensure that the exercise was performed safely and
142	properly. Every exercise session began and ended with a 5-minute stretching session
143	supervised by an assistant. To improve muscular strength and cardiovascular fitness in
144	middle-aged and elderly populations, several societies ^{28,29)} have published guidelines
145	that recommend combining training intensity, volume, and frequency to optimize
146	muscle hypertrophy and strength gains as well as improve cardiorespiratory function.
147	The guidelines also recommend a training frequency of 3-5 days per week for aerobic
148	training and 2-3 days per week for resistance training ²⁸⁾ . HTSW is an exercise method
149	that combines resistance exercise with walking. Therefore, we made subjects exercise in
150	this study three times a week rather than every day.
151	
152	HTSW protocol
153	During the walking exercise both lower extremities were stimulated using HTS in
154	response to the gait phase of each foot. Electrical stimulation of the quadriceps started
155	gradually from just before heel contact and stopped with heel off (Fig. 1). Conversely,
156	electrical stimulation of the hamstring started gradually from just before heel off and

157	ended with heel contact (Fig. 1). The subjects performed the walking exercise by stride.
158	If the subjects were tired and could not continue walking, they were instructed to take
159	breaks at will. The joint range of motion during walking was not prescribed.
160	
161	Electrical stimulation protocol
162	The electrical stimulation device for this study, which has been described
163	previously ^{22,23)} , was remodeled by Panasonic Corporation (Home Appliances
164	Development Center, Corporate Engineering Division, Appliances Company, Panasonic
165	Corporation 2-3-1-2 Noji-higashi, Kusatsu City, Shiga, Japan). The device consists of a
166	custom designed waveform generator capable of delivering stimulating signals with
167	unique frequencies and waveforms to as many as 4 pairs of electrodes. Acceleration
168	sensors as joint motion sensors (EWTS9PD, Home Appliances Development Center,
169	Corporate Engineering Division, Appliances Company, Panasonic Corporation 2-3-1-2
170	Noji-higashi, Kusatsu City, Shiga, Japan) were placed on the front of each leg 88 mm
171	above the patellar edge. Motion sensors measured the hip joint angular velocity during
172	walking (Fig. 2). They analyzed the algorithm of each walking pattern, and stimulated

173	the antagonist of the motion of each bilateral knee joint during walking. Pairs of 5 x
174	12-cm low impedance gel-coated silver fiber electrodes (Nihon Medix Co, 315-1,
175	Mukai-machi, Minami-hanashima, Matsudo-shi, Chiba-ken, Japan.) were placed to
176	widely cover each motor point of the quadriceps and hamstrings. They were built into a
177	quick-drying training suit that the subjects could put on easily.
178	
179	Stimulation Parameters
180	The stimulation waveform used in this study consists of a 5,000 Hz carrier
181	frequency with a pulse width of 200 μs modulated at 40 Hz (2.4 ms on, 22.6 ms off) to
182	deliver a rectangular biphasic pulse ³⁰⁾ . The electrical stimulator gives constant voltage
183	stimulus to the human body (regulated voltage). It has a stimulus pattern with interlock
184	and a limiter for safety. Therefore, the effective current is interlocked at 23mArms when
185	using 500 Ω of the human body equivalent circuit, and the peak voltage and current is
186	limited to under 80 V. Stimulation intensities were re-determined every two weeks
187	during the training period. We regulated stimulation intensity so that the exercise
188	intensities were adjusted to 80% of the maximum comfortable intensity that would

189	successfully improve muscle strength and mass without causing pain or numbness ²⁵⁾ . At
190	these electrical stimulation intensities, all subjects were able to walk for 30 minutes.
191	
192	Evaluations
193	All the evaluations were performed by a blinded assessor one week before and after
194	the training respectively.
195	
196	Maximal isokinetic torque of knee extension measurement
197	All the evaluations were performed by one physical therapist and three assistants.
198	Maximal volitional isokinetic knee extension/flexion torques were measured at angular
199	velocities of 60°/sec with the BIODEX SYSTEM 3 PRO (Biodex Medical Systems Inc.,
200	Shirley, NY, USA). To reduce the potential for pain exacerbation or injury associated
201	with maximal eccentric contraction, peak torque was measured 60° per second ³¹ .
202	McCleary reported the reliability of reciprocal concentric knee extension/flexion torque
203	using the Biodex isokinetic dynamometer. Biodex was conducted using this protocol as
204	previously described ³²⁾ . During the strength measurements, the subject was seated on

205	the Biodex in an upright position. Velcro belts were applied to fix the trunk and thigh in
206	position. The seat was adjusted to the same position at each evaluation. Each session
207	began by establishing that the subjects could move their lower extremity comfortably
208	throughout the full 10 - 100 $^{\circ}$ arc of the exercise range. They then performed three
209	practice contractions in the direction and at the speed to be tested. A measurement
210	session consisted of 3 sets separated by 3-minutes after the practice; the three
211	measurements from the non-dominant lower extremities were pooled, and the mean
212	adjusted according to each body weight (kg) used for statistical analysis.
213	
214	Muscle volume of quadriceps femoris muscle measurement (MV)
215	Ultrasonographic evaluations were performed with an 8 MHz linear probe
216	(SSA-510A [Famio5], Toshiba Medical Systems Corporation, Tochigi, Japan) by the
217	same physiatrist, who was blinded to the exercise groups. Measurements were taken on
218	the rectus femoris muscle of the non-dominant lower extremity. Subjects were
219	positioned supine with their legs extended and their muscles relaxed. A water-soluble
220	transmission gel was applied to the transducer to aid acoustic coupling and also to

221	eliminate deformations of muscle that can occur when pressure is directly applied to the
222	skin. Images were obtained at the levels of 15 cm above the patellar superior border.
223	When imaging for pennation angle and fascicle length was carried out, the probe was
224	held with a light touch so as not to cause any muscle deformation. Muscle thickness was
225	defined as the distance between the deeper and upper aponeurosis (MV).
226	
227	One-leg standing test
228	The one-leg standing test can be a tool for predicting frailty in community-dwelling
229	elderly populations. The one-leg standing test was conducted to evaluate balance
230	function ³³⁾ . The subjects were measured according to the length of time they were able
231	to stand on their non-dominant lower limb without support with eyes open to assess
232	postural steadiness in a static position ³⁴⁾ .
233	
234	Functional reach test
235	The functional reach test is useful for detecting dynamic balance impairment,
236	change in balance performance over time, and in the design of modified environments

237	for impaired older persons ³⁵⁾ . The subjects stood straight with one arm stretched out in
238	front at 90° of shoulder flexion with wrists and fingers straight and palms facing down.
239	The starting position was measured at the tip of the middle finger. The subjects were
240	instructed to reach their hand as far forward as possible without taking a step, and the
241	position of the tip of the middle finger at the end of the reach was recorded. The
242	distance between the starting point and the end point was the reach distance
243	automatically measured in centimeters. The subjects performed one test with their
244	dominant hand after one practice.
245	
246	10-meter maximal gait time (10MW)

Gait speed is a general indicator of physical function³⁶⁾. Gait speed is a consistent risk factor for disability, cognitive impairment, falls, and mortality. For the evaluation of the 10-meter maximal gait time, 2 meters were added to allow for acceleration before and deceleration after the 10-meter gait respectively. The maximal gait time for the 10-meter gait was measured to evaluate gait speed. Gait speed is a functional assessment tool to show individual activity of daily living (ADL) or physical capacity³⁷⁾.

253	The subjects were instructed to walk as fast as possible. The evaluation was performed
254	by two evaluators, and the times provided by the two evaluators were averaged for
255	analysis.
256	
257	Timed up & go test (TUG)
258	The National Institute of Clinical Evidence guidelines also advocate the use the
259	TUG for assessment of gait and balance in the prevention of falls in older people ³⁸⁾ .
260	TUG was conducted to evaluate functional mobility ³⁹⁾ . The subjects were measured
261	according to the time it took to rise from a standard chair (46 cm seat height), walk a
262	distance of 3 m, walk back to the chair and sit down. The evaluation was performed two
263	times, and the scores from the two times were averaged for analysis.
264	
265	6-minute walking test (6MWT)
266	A 6-minute walk is a good physiologic health predictor ⁴⁰⁾ . The 6MWT was chosen
267	because it is easier to administer, better tolerated, and better reflects activities of daily

268 living than other walk tests. The 6MWT is sub-maximal standardized aerobic test. The

269	evaluation was performed in a 25-meter oval walking course at an indoor sports center.
270	The subjects walked at a regular walking speed for 6 minutes, and their walking
271	distances were measured to evaluate physical fitness. Before the test, the subjects rested
272	for 30 minutes, and their blood pressure and pulse were taken. The evaluation was
273	suspended if the subjects were unable to walk or did not feel well. The evaluators did
274	not support them during their walk.
275	
276	Statistical Analysis
277	All variables are presented as means and SD. Baselines of the group were assessed
278	using the Wilcoxon rank sum test. Values for knee extension torque/knee flexion torque,
279	MV, one-leg standing test, functional reach test, 10-meter maximum gait speed, TUG,
280	and 6 MWT, were assessed using the Wilcoxon signed rank test in order to compare the
281	differences between pre-training and post-training. All the statistical analyses were
282	performed using JMP Version 9.0 statistical software (SAS Institute Inc., Cary, NC,
283	USA) and p values < 0.05 were considered to be statistically significant.

285 **Results**

300

286	Baseline anthropometric measurements, knee extension torque and knee flexion					
287	torque were similar in both groups (Table 1). Knee extension torque in the HTSW group					
288	significantly increased from 1.35 \pm 0.34 Nm/kg pre-training to 1.51 \pm 0.34 Nm/kg post-					
289	training (p < 0.05) (Table 2). Knee flexion torque in the HTSW group significantly					
290	increased from 0.78 \pm 0.25 Nm/kg pre-training to 0.92 \pm 0.22 Nm/kg post-training (p <					
291	0.05). MV in the HTSW group significantly increased from 0.25 \pm 0.06 mm/kg					
292	pre-training to 0.27 \pm 0.05 mm/kg at the end of training (p < 0.05). Knee extension					
293	torque in the CTR group did not significantly change (Table 3). Knee flexion torque in					
294	the CTR group significantly increased from 0.68 \pm 0.12 Nm/kg pre-training to 0.78 \pm					
295	0.14 Nm/kg post-training (p < 0.05). MV in the CTR group did not significantly change.					
296						
297	Discussion					
298	The primary objective was to evaluate the present training system to see whether it					
299	would improve muscle strength and physical function in older adults. No subjects					

withdrew from this training, and they all completed their 12-week (3 times/week)

301	training program. There were no adverse events in this study. The findings of this study
302	show that the simultaneously combined application of electrical stimulation to walking
303	exercise using the HTS technique (HTSW) can improve muscle strength and physical
304	function in elderly people. HTSW could be a novel effective exercise method for elderly
305	people.
306	Aerobic exercise is recommended for improving physical function and for
307	preventing geriatric diseases ¹³⁾ . In particular, walking is a very simple aerobic exercise
308	and does not cost money for elderly people who have difficulty performing moderate or
309	severe intensity exercise. The aerobic intensity of exercise is light to moderate intensity,
310	so there is lower risk of injury or pain exacerbation than at a higher intensity. Aerobic
311	exercise is commonly used to improve physical fitness or physical activity. In this study,
312	both CTR and HTSW improved the 6-minute walking test as an effect of aerobic
313	exercise.
314	Strength training is also recommended for improving physical function and physical
315	activity and preventing falls in elderly people ¹³⁾ . Lower limb muscles (e.g. particularly
316	the quadriceps) which influence physical function (e.g. gait speed and body balance) are

317	especially important ^{41,42)} . Knee flexion torque significantly increased in both groups. As
318	far as we know, a few of studies have investigated the effect of endurance training on
319	knee flexion in elderly people. Knee flexion (i.e., hamstrings) involves two-jointed
320	muscles (TJM) that act as hip extension as well as knee flexion. During walking, the
321	hamstring muscles serve the role of hip extension in the stance phase and knee flexion
322	in the swing phase, respectively. Furthermore, before heel contact, the hamstrings as
323	well as the quadriceps are activated during normal walking ⁴³⁾ . These results indicate that
324	increased hamstring coactivity is useful for stabilizing the knee by increasing the
325	compressive force. Sipila reported that the number of endurance (walking) training
326	sessions is significantly related to the change in the cross-sectional area knee flexors ⁴⁴).
327	Kubo et al. investigated the effects of 24 weeks of walking training on muscle strength
328	in the elderly ⁴⁵⁾ . The participants performed exercises for 30 to 40 minutes four times a
329	week. The knee extension torque did not significantly improve (4.5%), but knee flexion
330	torque significantly improved (19.6%). Accordingly, it seems reasonable to suppose that
331	walking training in older people has an effect on the function of the hamstrings.
332	In this study, HTSW increased the strength of the quadriceps and hamstring muscles,

333	and improved physical function. The quadriceps are the largest muscles in the human
334	body. Knee extension strength and ADL correlate positively, and the percentage of
335	people with ADL disability decreases with increased knee extension strength ¹²⁾ . Also,
336	many physical functions are related to the lower limbs. Thus, the target of this
337	stimulation was the quadriceps and hamstrings. In general, strength training intensity
338	was performed at light to moderate, around 60% of 1 RM or 50%-100% of 10 RM ⁴⁶⁾ .
339	We developed HTS as a method of strength training utilizing electrically stimulated
340	eccentric antagonist muscles ²⁴⁾ . Eccentric contractions are more conducive to
341	hypertrophy than concentric contractions ⁴⁷). HTS succeeded in increasing muscle
342	strength and mass even at low-intensity exercise (15-20% of 1RM) ²²⁻²⁵⁾ . Takano showed
343	that HTS was an effective exercise technique for elderly people who have difficulty
344	doing high intensity exercise ²⁵⁾ . It follows that HTSW could be effective not only as
345	aerobic exercise, but also as resistance exercise. It would also be efficient in terms of
346	time because HTS is effective as both aerobic exercise and resistance exercise
347	simultaneously. However, in this study, HTSW did not improve balance function
348	associated with the risk of falling for elderly people. The improvement of balance

349	function is said to require a separate balance training program ⁴⁸⁾ and may not be
350	improved by HTSW. The development of an exercise method that is effective for
351	muscular strength, physical strength, and balance function would be ideal. The aerobic
352	intensity of exercise is light to moderate, so there is lower risk of injury or pain
353	exacerbation than at a higher intensity. Aerobic exercise is commonly used to improve
354	physical fitness or physical activity. In this study, both CTR and HTSW resulted in
355	improvement in the 6-minute walking test as an effect of aerobic exercise. However,
356	weight bearing exercise such as walking might aggravate knee pain for people with
357	knee osteoarthritis which is common in elderly people ^{49,50)} . Indeed, in this study, 4 out
358	of 8 subjects developed aggravated knee pain in the CTR group. (We didn't show the
359	data.) In contrast, HTSW was able to lessen knee pain in all four subjects who began the
360	study with knee pain. NMES is effective for pain relief ^{51}). Therefore, we suppose that
361	HTSW would be effective not only for prevention of the usual knee pain exacerbation,
362	but also physical fitness since HTSW is a form of NMES. In addition, the electrical
363	stimulation of HTSW stimulated the antagonist muscle of the knee joint bending motion
364	during walking (quadriceps and hamstrings alternately). The antagonist muscles have

365	the role of maintaining joint stability ⁵²⁾ . So HTSW may contribute to the stabilization of
366	the knee joint. Additional long-term prospective studies are needed to determine the
367	long-term effect of pain relief and the level of arthropathy prevention.
368	A potential limitation of this study was the limited number of participants, and there
369	was only one male in each group. During this study, adverse events (e.g. falling,
370	grogginess) using HTSW didn't occur. Also, the analysis of the timing of electrical
371	stimulation, and the effect of HTSW on walking need more examination. The main
372	purpose of this study was to serve as a pilot study for developing a novel technique of
373	HTS combined with walking exercise for elderly people. However, a long-term
374	randomized control study using HTSW is necessary to evaluate its effectiveness for the
375	health enhancement of elderly people compared to conventional training methods.
376	
377	Conclusions
378	This is a novel training method to electrically stimulate the antagonist as resistance
379	exercise during aerobic walking exercise (HTSW). This study's results show that HTSW
380	was able to improve knee muscle strength and physical function in elderly people.

382	Ackno	wled	lgemen	its

- 383 Financial Disclosure
- 384 The authors have declared that Panasonic Corporation has competing interests.
- 385 However, the staff of Panasonic Corporation were not involved in direct implementation
- 386 of this study or analysis of results. We studied the development of a novel effective

training method for the treatment of people with knee osteoarthritis.

- 388 Funding/Support
- 389 This study was supported by funding of \$45,000 from Panasonic Corporation. These
- 390 funds were primarily used for personnel expenses, compensation and the stimulator

391 purchase. They were only used for the expenses of this study.

- 392 Institutional Review
- 393 This study was designed in accordance with the ethical standards of the Helsinki
- 394 Declaration of 1975 and received the approval of the Ethics Committee of Kurume
- 395 University. All procedures were fully explained to the participants who gave their
- 396 written informed consent to participate.
- 397

398 **References**

399	1.	Clouston SA, Brewster P, Kuh D, Richards M, Cooper R, Hardy R, Rubin MS
400		and Hofer SM. 2013. The dynamic relationship between physical function and
401		cognition in longitudinal aging cohorts. Epidemiol Rev 35: 33-50.
402	2.	Aranda-García S, Busquets A, Planas A, Prat-Subirana JA and Angulo-Barroso
403		RM. 2015. Strength, static balance, physical activity, and age predict maximal
404		gait speed in healthy older adults from a rural community: a cross sectional study.
405		J Aging Phys Act 23: 580-587.
406	3.	Kato Y, Islam MM, Young KC, Rogers ME and Takeshima N. 2015. Threshold
407		of chair stand power necessary to perform activities of daily living independently
408		in community-dwelling older women. J Geriatr Phys Ther 38: 122-126.
409	4.	Mustafaoğlu R, Unver B and Karatosun V. 2015. Evaluation of stair climbing
410		in elderly people. J Back Musculoskelet Rehabil 28: 509-516.
411	5.	Rantanen T. Muscle strength, disability and mortality. 2003. Scand J Med Sci
412		Sports 13: 3-8.
413	6.	Nakamura K. 2008. A "super-aged" society and the "locomotive syndrome". J

414	Orthop S	Sci	13:	1-2

415	7.	Hagen KB, Dagfinrud H, Moe RH, Østerås N, Kjeken I, Grotle M and
416		Smedslund G. 2012. Exercise therapy for bone and muscle health: an overview of
417		systematic reviews. BMC Med 10: 167.
418	8.	Gregg EW, Cauley JA, Stone K, Thompson TJ, Bauer DC, Cummings SR and
419		Ensrud KE; Study of Osteoporotic Fractures Research Group. 2003. Relationship
420		of changes in physical activity and mortality among older women. JAMA 289:
421		2379-2386.
422	9.	Lord SR, Ward JA, Williams P and Anstey KJ. 1994. Physiological factors
423		associated with falls in older community-dwelling women. J Am Geriatr Soc 42:
424		1110-1117.
425	10	. Dargent-Molina P, Favier F, Grandjean H, Baudoin C, Schott AM, Hausherr E,
426		Meunier PJ, Breart G and Group E. 1996. Fall-related factors and risk of hip
427		fracture: the EPIDOS prospective study. Lancet 348: 145-149.
428	11	. Guadalupe-Grau A, Carnicero JA, Gómez-Cabello A, Gutiérrez Avila G,
429		Humanes S, Alegre LM, Castro M, Rodríguez-Mañas L and García-García FJ.

430	2015. Association of regional muscle strength with mortality and hospitalisation
431	in older people. Age Ageing 445: 790-795.
432	12. Kojima N, Kim H, Saito K, Yoshida H, Yoshida Y, Hirano H, Obuchi S,
433	Shimada H and Suzuki T. 2014. Association of knee-extension strength with
434	instrumental activities of daily living in community-dwelling older adults.
435	Geriatr Gerontol Int 14: 674-680.
436	13. Linda SP, Ross A, Deborah R and Paul DT. 2014. ACSM's Guidelines for
437	Exercise Testing and Prescription (Ninth Edition) by the American College of
438	Sports Medicine. Wolters Kluwer/Lippincott Williams & Wilkins Philadelphia,
439	PA: 204-211.
440	14. Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF,
441	Ragg KE, Ratamess NA, Kraemer WJ and Staron RS. 2002. Muscular
442	adaptations in response to three different resistance-training regimens: specificity
443	of repetition maximum training zones. Eur J Appl Physiol 88: 50-60.
444	15. Balogum JA, Onilari OO, Akeju OA and Marzouk DK. 1993. High voltage
445	effects of pulse frequency. Arch Phys Med Rehabil 74: 910-916.

446	16. Delitto A, Rose SJ, McKowen JM, Lehman RC, Thomas JA and Shively RA.
447	1988. Electrical stimulation versus voluntary exercise in strengthening thigh
448	musculature after anterior cruciate ligament surgery. Phys Ther 68: 660-663.
449	17. Kagaya H, Shimada Y, Ebata K, Sato M, Sato K, Yukawa T and Obinata G.
450	1995. Restoration and analysis of standing-up in complete paraplegia utilizing
451	functional electrical stimulation. Arch Phys Med Rehabil 76: 876-881.
452	18. Snyder-Mackler L, Delitto A, Bailey SL and Stralka SW. 1995. Strength of the
453	quadriceps femoris muscle and functional recovery after reconstruction of the
454	anterior cruciate ligament. A prospective, randomized clinical trial of electrical
455	stimulation. J Bone Joint Surg Am 77: 1166-1173.
456	19. Stein RB, Kimoto M and Bobet J. 1999. Biomechanics of human quadriceps
457	muscle during electrical stimulation. J Bionmech 32: 347-353.
458	20. Dehail P, Duclos C and Barat M. 2008. Electrical stimulation and muscle
459	strengthening. Ann Readapt Med Phys 51: 441-451.
460	21. Paillard T. 2008. Combined application of neuromuscular electrical stimulation
461	and voluntary muscular contractions. Sports Med 38: 161-177.

462	22.	Matsuse H, Shiba N, Umezu Y, Nago T, Tagawa Y, Kakuma T, Nagata K and
463		Basford JR. 2006. Muscle training by means of combined electrical stimulation
464		and volitional contraction. Aviat Space Environ Med 77: 581-585.
465	23.	Iwasaki T, Shiba N, Matsuse H, Nago T, Umezu Y, Tagawa Y, Nagata K and
466		Basford JR. 2006. Improvement in knee extension strength through training by
467		means of combined electrical stimulation and voluntary muscle contraction.
468		<i>Tohoku J Exp Med</i> 209: 33-40.
469	24.	Yanagi T, Shiba N, Maeda T, Iwasa K, Umezu Y, Tagawa Y, Matsuo S, Nagata
470		K, Yamamoto T and Basford JR. 2003. Agonist contractions against electrically
471		stimulated antagonists. Arch Phys Med Rehabil 84: 843-848.
472	25.	Takano Y, Haneda Y, Maeda T, Sakai Y, Matsuse H, Kawaguchi T, Tagawa Y
473		and Shiba N. 2010. Increasing muscle strength and mass of thigh in elderly
474		people with the hybrid-training method of electrical stimulation and volitional
475		contraction. Tohoku J Exp Med 221: 77-85.
476	26.	Matsuse H, Shiba N, Takano Y, Yamada S, Ohshima H and Tagawa Y. 2013.
477		Cycling exercise to resist electrically stimulated antagonist increases oxygen

478	uptake in males: pilot study. J Rehabil Res Dev 50: 545-554.
479	27. Omoto M, Matsuse H, Takano Y, Yamada S, Ohshima H, Tagawa Y and Shiba
480	N. 2013. Oxygen uptake during aerobic cycling exercise simultaneously
481	combined with neuromuscular electrical stimulation of antagonists. J Nov
482	Physiother 3: 18.
483	28. American College of Sports Medicine. 1998. Position stand: the recommended
484	quantity and quality of exercise for developing and maintaining cardiovascular
485	and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc 30:
486	975-991.
487	29. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, Macera CA,
488	Heath GW, Thompson PD and Bauman A. 2007. Physical activity and public
489	health: updated recommendation for adults from the American College of Sports
490	Medicine and the American Heart Association. Med Sci Sports Exerc 39:
491	1423-1434.
492	30. Ward AR and Shkuratova N. 2002. Russian electrical stimulation: the early
493	experiments. Phys Ther 82: 1019-1030.

494	31. Glass NA, Torner JC, Frey Law LA, Wang K, Yang T, Nevitt MC, Felson DT,
495	Lewis CE and Segal NA. 2013. The relationship between quadriceps muscle
496	weakness and worsening of knee pain in the MOST cohort: a 5-year longitudinal
497	study. Osteoarthritis Cartilage 21 (9) : 1154-1159.
498	32. McCleary RW and Andersen JC. 1992. Test-retest reliability of reciprocal
499	isokinetic knee extension and flexion peak torque measurements. J Athl Train
500	27 (4) : 362-365.
501	33. Michikawa T, Nishiwaki Y, Takebayashi T and Toyama Y. 2009. One-leg
502	standing test for elderly populations. J Orthop Sci 14: 675-685.
503	34. Jonsson E, Seiger A and Hirschfeld H. 2004. One-leg stance in healthy young
504	and elderly adults: a measure of postural steadiness? Clin Biomech 19: 688-694.
505	35. Duncan PW, Weiner DK, Chandler J and Studenski S. 1990. Functional reach:
506	a new clinical measure of balance. J Gerontol 45: M192-M197.
507	36. Bokshan SL, DePasse JM and Daniels AH. 2016. Sarcopenia in orthopedic
508	surgery. Orthopedics 39: e295-e300. 24: 1-6.
509	37. Abellan van Kan G, Rolland Y, Andrieu S, Bauer J, Beauchet O, Bonnefoy M,

510	Cesari M, Donini LM, Gillette Guyonnet S, Inzitari M, Nourhashemi F, Onder G,
511	Ritz P, Salva A, Visser M and Vellas B. 2009. Gait speed at usual pace as a
512	predictor of adverse outcomes in community-dwelling older people an
513	International Academy on Nutrition and Aging (IANA) Task Force. J Nutr Health
514	Aging 13: 881-889.
515	38. Barry E, Galvin R, Keogh C, Horgan F and Fahey T. 2014. Is the Timed Up
516	and Go test a useful predictor of risk of falls in community dwelling older adults:
517	a systematic review and meta-analysis. BMC Geriatr 14: 14.
518	39. Podsiadlo D and Richardson S. 1991. The timed "Up & Go": a test of basic
519	functional mobility for frail elderly persons. J Am Geriatr Soc 39: 142-148.
520	40. Lord SR and Menz HB. 2002. Physiologic, psychologic, and health predictors of
521	6-minute walk performance in older people. Arch Phys Med Rehabil 83: 907-911.
522	41. Heiden TL, Lloyd DG and Ackland TR. 2009. Knee extension and flexion
523	weakness in people with knee osteoarthritis: is antagonist cocontraction a factor?
524	J Orthop Sports Phys Ther 39: 807-815.
525	42. Hurley MV, Scott DL, Rees J and Newham DJ. 1997. Sensorimotor changes

526	and functional performance in patients with knee osteoarthritis. Ann Rheum Dis
527	56: 641-648.
528	43. Hortobágyi T, Westerkamp L, Beam S, Moody J, Garry J, Holbert D and
529	DeVita P. 2005. Altered hamstring-quadriceps muscle balance in patients with
530	knee osteoarthritis. Clin Biomech (Bristol, Avon) 20(1): 97-104.
531	44. Sipila S and Suominen H. 1995. Effects of strength and endurance training on
532	thigh and leg muscle mass and composition in elderly women. J Appl Physiol 78:
533	334-340.
534	45. Kubo K, Ishida Y, Suzuki S, Komuro T, Shirasawa H, Ishiguro N, Shukutani Y,
535	Tsunoda N, Kanehisa H and Fukunaga T. 2008. Effects of 6 months of walking
536	training on lower limb muscle and tendon in elderly. Scand J Med Sci Sports 18:
537	31-39.
538	46. Benito Peinado PJ, Cupeiro Coto R and Calderón Montero FJ. 2010. Physical
539	exercise as non pharmacologic therapy in knee osteoarthritis. Reumatol Clin 6:
540	153-160.
541	47. Dudley GA, Tesch PA, Miller BJ and Buchanan P. 1991. Importance of

542	eccentric actions in performance adaptations to resistance training. Aviat Space
543	Environ Med 62: 543-550.
544	48. Sherrington C, Tiedemann A, Fairhall N, Close JC and Lord SR. 2011.
545	Exercise to prevent falls in older adults: an updated meta-analysis and best
546	practice recommendations. NSW Public Health Bull 22: 78-83.
547	49. Baliunas AJ, Hurwitz DE, Ryals AB, Karrar A, Case JP, Block JA and
548	Andriacchi TP. 2002. Increased knee joint loads during walking are present in
549	subjects with knee osteoarthritis. Osteoarthritis Cartilage 10: 573-579.
550	50. Hurwitz DE, Ryals AR, Block JA, Sharma L, Schnitzer TJ and Andriacchi TP.
551	2000. Knee pain and joint loading in subjects with osteoarthritis of the knee. J
552	Orthop Res 18: 572-579.
553	51. Osiri M, Welch V, Brosseau L, Shea B, McGowan J, Tugwell P and Wells G.
554	2000. Transcutaneous electrical nerve stimulation for knee osteoarthritis.
555	Cochrane Database Syst Rev 4: CD002823.
556	52. Baratta R, Solomonow M, Zhou BH, Letson D, Chuinard R and D'Ambrosia R.
557	1988. Muscular coactivation. The role of the antagonist musculature in

558	maintaining knee stability. Am J Sports Med 16: 113-122.
559	
560	

561 Figure Legend

- 562 Fig. 1 Schematic model of HTSW
- 563 During walking both lower extremities are electrically stimulated in response to the gait
- 564 phase of each foot. Electrical stimulation of the quadriceps is gradually initiated from
- 565 just before heel contact and discontinues with heel off. Conversely, electrical
- stimulation of the hamstring is gradually initiated from just before heel off and
- 567 discontinues with heel contact. The result is that both muscles are exercised electrically
- 568 during walking exercise.
- 569
- 570 Fig. 2 The joint sensor and electrical stimulation
- 571 Motion sensors measured the hip joint angular velocity during walking.
- 572 They analyzed the algorithm of each walking pattern, and stimulated an electrical
- 573 eccentric contraction to a quadricep, hamstring muscle.
- 574

```
575 Table 1. Baseline anthropometric measurements, knee extension torque and knee
```

576 flexion torque of patients

577	¹ Wilcoxon rank sum test.	BMI: Body n	nass index; NS:	Not significant

579	Table 2.	The differences	between	pre-training	and pos	t-training in	the HTSW	group)
-----	----------	-----------------	---------	--------------	---------	---------------	----------	-------	---

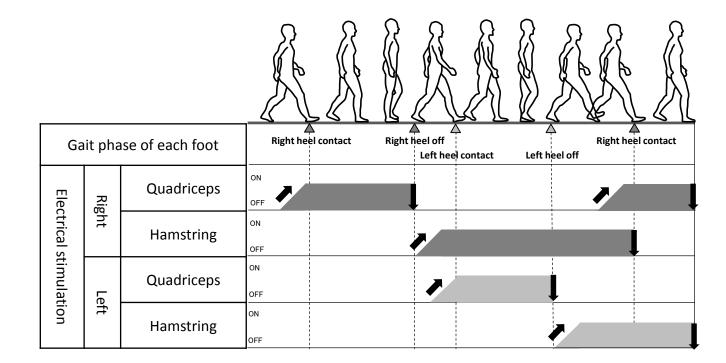

- ¹Wilcoxon signed rank test, p for difference between pre-training and post-training, MV:
- 581 muscle volume; TUG: Timed up & go test; 6MWT: 6-minute walking test; NS: Not
- 582 significant
- 583

Table 3. The differences between pre-training and post-training in the CTR group

- 585 1Wilcoxon signed rank test, p for difference between pre-training and post-training,
- 586 MV: muscle volume; TUG: Timed up & go test; 6MWT: 6-minute walking test; NS:
- 587 Not significant
- 588

589

Fig.1

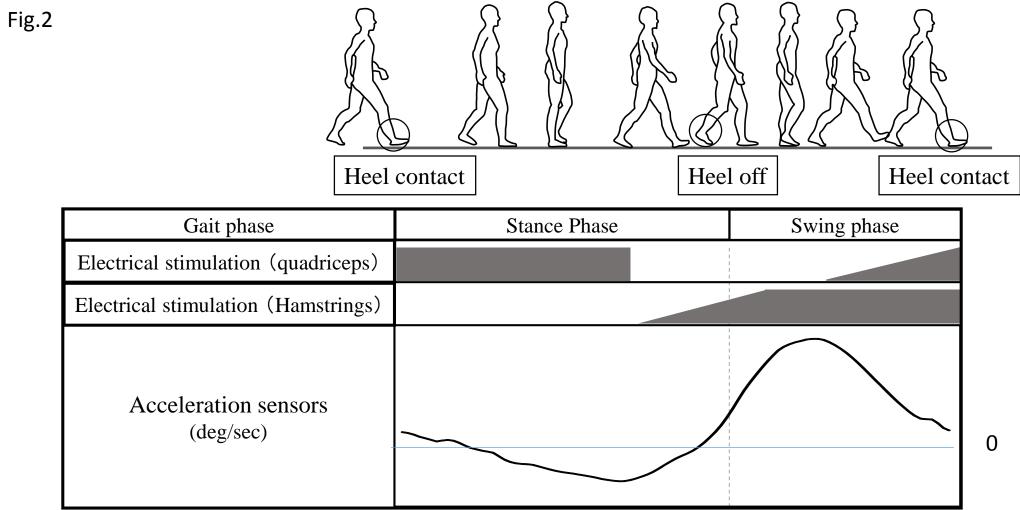


Table1

characteristic	HTSW group	CTR group	P value ¹
age	67.4±3.4	67.0±1.9	NS
Height(cm)	156.9±10.58	153±4.09	NS
Body weight(kg)	56.21±11.97	52.33±6.99	NS
BMI(kg/m ²)	22.61±2.93	22.19±2.25	NS
Sex(male/female)	1/7	1/7	
Knee extension torque(Nm/kg)	1.35±0.34	1.56±0.18	NS
Knee flexion torque(Nm/kg)	0.78±0.25	0.68±0.12	NS

Table2 HTSW group

	pre	post	р
Knee extension torque(Nm/kg)	1.35±0.34	1.51±0.34	0.031
Knee flexion torque(Nm/kg)	0.78±0.25	0.92 ± 0.22	0.016
MV(mm/kg)	0.25 ± 0.06	0.27±0.05	0.016
TUG(sec)	7.74±0.90	5.70±0.92	0.007
6MWT	529.79±46.92	595.84±70.64	0.007
10-meter maximal gait time	5.27±0.49	4.76±0.59	0.031
Functional reach test	32.45±5.47	34.33±6.71	NS
One-leg standing test	4.20±1.93	7.52±8.40	NS

Table3 CTR group

	pre	post	р
Knee extension torque(Nm/kg)	1.56 ± 0.18	1.66±0.22	NS
Knee flexion torque(Nm/kg)	0.68±0.12	0.78±0.15	0.016
MV(mm/kg)	0.28±0.12	0.31 ± 0.06	NS
TUG(sec)	6.14±0.65	4.78 ±0.58	0.008
6MWT	563.66±45.21	654.24±34.69	0.008
10-meter maximal gait time	5.17±0.71	4.37±0.57	0.016
Functional reach test	28.62±5.95	30.47±5.12	NS
One-leg standing test	4.33±2.25	7.54±6.98	NS