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Abbreviations
DES  Drug-eluting stent
IL-1β  Interleukin-1 beta
Ach  Acetylcholine
CASMCs  Coronary artery smooth muscle cells
BMS  Bare-metal stent
mTOR  Mammalian target of rapamycin
NTG  Nitroglycerin
HUVECs  Human umbilical vein endothelial cells

Introduction

The present generation of mammalian target of rapamycin 
(mTOR)-inhibitor drug-eluting stents (DESs) has dramati-
cally reduced in-stent restenosis and target lesion revascu-
larization rates compared with those in bare-metal stents 
(BMSs) after percutaneous coronary intervention. Within 
1-year post-procedure, DES implantation results in a reduc-
tion in the target lesion revascularization rate compared 
with BMSs (DES: 0–4% vs. BMS: 17–23%) [1, 2]. How-
ever, long-term outcomes with DESs versus BMSs are 
inconsistent [3–6]. Norwegian Coronary Stent Trial (NOR-
STENT) has recently shown that rates of repeat revascu-
larization were lower in the DES group, with no significant 
differences in the rates of death, myocardial infarction, and 
quality of life at 6 years of follow-up between the DES and 
BMS groups [5]. Possible interaction of the potent anti-pro-
liferative agent and permanent non-biodegradable synthetic 
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to assess the association between serum interleukin-1beta 
(IL-1β) and coronary endothelial dysfunction in patients 
with mTOR-inhibitor DES implantation and to investigate 
the association between the mTOR pathway and IL-1β. We 
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artery disease. At a 10-month follow-up, peripheral venous 
blood samples were collected to measure IL-1β levels. 
Coronary endothelial dysfunction was evaluated by intra-
coronary infusion of incremental doses of acetylcholine. 
Serum IL-1β levels were significantly associated with the 
magnitude of vasoconstriction to acetylcholine at the seg-
ment distal (P < 0.05) but not proximal to the stent. Serum 
IL-1β levels were positively correlated with stent length 
(P < 0.05). To examine the direct effects of mTOR inhibi-
tion on IL-1β release, sirolimus was incubated in cultured 
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onary artery smooth muscle cells (CASMCs). Sirolimus 
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gers IL-1β release through transcriptional activation in 
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polymer has raised concerns regarding delayed arterial 
healing and poor re-endothelialisation at the stent site 
[7–9]. These may lead to impaired endothelial dysfunction 
at the segments adjacent to the site of DES implantation 
[10–12]. With regard to coronary endothelial dysfunction, 
abnormal vasoconstriction is shown by acetylcholine (Ach) 
infusion [10, 13–16], rapid atrial pacing [17], or exercise 
in coronary angiography [18]. However, currently, there is 
no useful non-invasive biomarker for detecting coronary 
endothelial dysfunction after DES implantation.

Proinflammatory cytokine interleukin-1beta (IL-1β) 
proteins are translated as 31-kDa precursors (pro-IL-1β) 
and are cleaved by caspase-1 into active “mature” 17-kDa 
forms through cleavage [19]. Pro-IL-1β transcription is 
induced by nuclear factor-kappa B activation [20]. Healthy 
endothelium generates nitric oxide (NO), which maintains 
vascular homeostasis and normal vasomotor tone. How-
ever, in pathophysiological situations, excess generation 
of IL-1β may decrease NO bioactivity and bioavailability 
[21–23]. IL-1β decreases endothelial NO synthase gene 
expression through inhibition of p38 phosphorylation [24, 
25]. Therefore, we speculate that elevated serum IL-1β lev-
els are a potential biomarker of endothelial dysfunction in 
patients with DES implantation. The present study aimed 
to examine the association between serum IL-1β levels and 
coronary endothelial dysfunction in patients with mTOR-
inhibitor DES implantation and to investigate the possible 
mechanism of mTOR-IL-1β signaling pathway.

Materials and methods

Study protocol

We enrolled 35 patients in this study who were diagnosed 
with coronary artery disease, including silent myocar-
dial ischemia, stable angina, and restenosis of a BMS 
site, from April 2011 to June 2012. All mTOR-inhibitor 
DESs were implanted using the standard percutaneous 
coronary intervention techniques. Sirolimus-eluting stents 
(Cypher, Cordis Corporation, Miami Lakes, FL, USA) 
were implanted in two patients, a zotarolimus-eluting stent 
(Endeavor, Medtronic, Inc. Santa Rosa, CA, USA) in one, 
everolimus-eluting stents (Xience V or Prime, Abbott Vas-
cular, Santa Clara, CA, USA; Promus Element, Boston 
Scientific, Natick, MA, USA) in 17, and biolimus-eluting 
stents (Nobori, Terumo, Tokyo, Japan) in 15. Patients with 
the following conditions were excluded from this study: 
acute coronary syndrome, angiographic in-DES restenosis; 
clinical or angiographic history of coronary vasospasm; 
severe chronic kidney disease (creatinine level >2.0  mg/
dl); asthma; symptomatic congestive heart failure; and 
severe left ventricular dysfunction (left ventricular ejection 

fraction <30%). Informed consent was obtained from each 
patient. The study protocol conformed to the ethical guide-
lines of the 1975 Declaration of Helsinki as reflected in a 
priori approval by the institution’s review board.

Evaluation of coronary endothelial function

Coronary endothelial function was evaluated by measuring 
coronary vasomotion in response to Ach (Sigma–Aldrich, 
St Louis, MO, USA) at a 10-month follow-up. All vaso-
active drugs, including calcium-channel blockers, long-
acting nitrates, angiotensin-converting enzyme inhibitors, 
angiotensin receptor blockers, and beta-blockers, were 
discontinued at least 24 h before the procedure. After base-
line angiography, the endothelium-dependent vasomo-
tor response was evaluated by intracoronary infusion of 
incremental doses of Ach at  10−8,  10−7, and  10−6 mol/l for 
2 min. There was an interval of at least 3 min between each 
infusion. A temporary pacemaker was inserted through the 
femoral or brachial vein in all the patients. Thereafter, the 
endothelium-independent vasomotor response was tested 
by an intracoronary bolus infusion of 200 μg nitroglycerin 
(NTG; Eisai, Tokyo, Japan). Angiography was repeated 
2  min after each drug infusion. The maximal vasomotor 
responses to Ach and NTG infusions were measured by 
quantitative coronary angiography with the CASS II sys-
tem (Pie Medical BV, Maastricht, The Netherlands). Quan-
titative coronary analysis measurements were performed by 
an independent blinded observer. We evaluated vasomotor 
responses at the two segments, 5–15 mm proximal and dis-
tal to the stent, which were most constricted by Ach. We 
did not measure proximal coronary vasomotion in patients, 
whose stents were located in the ostial lesion of the coro-
nary artery (N = 10), because these precluded measurement 
of coronary vasomotion at the segments proximal to the 
stent site. In addition, as a reference, we evaluated an angi-
ographically normal segment in another vessel. Changes in 
the vessel diameter in response to Ach and NTG infusions 
were calculated as the percentage of change versus base-
line diameter. Endothelial dysfunction was described by the 
increased area under the curve (AUC) of cumulative Ach 
concentration-diameter changes at the segments proximal 
and distal to the stent site.

Measurement of serum IL-1β levels

Peripheral venous blood was drawn from the femoral or 
brachial sheath at the beginning of the procedure to avoid 
contamination with contrast fluid. Blood was allocated to 
different containers and centrifuged at 1500×g for 10 min. 
Serum was stored at −80 °C until use. Serum IL-1β levels 
were measured by a high-sensitivity ELISA (R&D Systems 
Inc., Minneapolis, MN, USA).
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Cell culture

Human umbilical vein endothelial cells (HUVECs) and 
coronary artery smooth muscle cells (CASMCs) were pur-
chased from Lonza (Basel, Switzerland). HUVECs (2 × 105 
cells/ml) were cultured in EGM-2 medium (Lonza) sup-
plemented with 2% fetal bovine serum. CASMCs (2 × 105 
cells/ml) were cultured in SmGM medium (Lonza) sup-
plemented with 5% fetal bovine serum. Passages 5–9 
were used for the experiments. Cells were growth-arrested 
in serum-free medium for 24  h and then incubated with 
 10−6 mol/l sirolimus (rapamycin, Sigma–Aldrich) or vehi-
cle for 12 h. The reaction was terminated by aspirating the 
medium. IL-1β release was estimated by measuring IL-1β 
levels in the conditioned medium with a high-sensitivity 
ELISA kit (R&D Systems Inc.). After three washes with 
ice-cold phosphate-buffered saline, cells were homoge-
nized in Trizol (Life Technologies Corporation, Carlsbad, 
CA, USA).

Quantitative real-time PCR

RNA was isolated with an RNeasy Plus Mini Kit (Qiagen, 
Valencia, CA, USA). PCR primers for IL-1β and glyceral-
dehyde 3-phosphate dehydrogenase (GAPDH) were pur-
chased from Life Technologies Corporation. Real-time 
PCR was performed with cDNA samples using the TaqMan 
Gene Expression Master Mix (Life Technologies Corpora-
tion). Gene relative expression was calculated in relation to 
GAPDH quantitative expression and normalized.

Immunoblotting

For immunoblotting, we used monoclonal rabbit antibody 
to human caspase-1 and monoclonal rabbit antibody to 
human cleaved caspase-1 (Asp297) (both purchased from 
Cell Signaling Technology, Danvers, MA).

Cells were growth-arrested in serum-free medium for 
24 h and then incubated with  10−6 mol/l sirolimus or vehi-
cle for 20 h. The reaction was terminated by aspirating the 
medium. After three washes with ice-cold phosphate-buff-
ered saline, cells were homogenized in lysis buffer contain-
ing a protease inhibitor cocktail using a FastPrep homog-
enizer (Thermo Savant, Holbrook, NY). Samples were 
then stored at −80 °C until use. Aliquots of cell lysate were 
separated on 4–12% sodium dodecyl sulphate–polyacryla-
mide gels by electrophoresis. Gels were then subjected to 
immunoblotting using a primary antibody (1:100 dilution), 
followed by a peroxidase-conjugated anti-rabbit second-
ary antibody (1:5000 dilution). Immunoreactive protein 
bands were detected using ECL western blotting reagents 
(Thermo Fisher Scientific, Waltham, MA). The inten-
sity of immunoreactive protein bands was quantified by 

densitometry using the ImageJ software (National Institutes 
of Health, Bethesda, MA). Caspase-1 and cleaved cas-
pase-1 were detected on the same gel following re-probing 
of the membranes.

Statistical analysis

Results are expressed as mean ± standard error. The AUC 
was calculated by the GraphPad Prism (GraphPad, San 
Diego, CA, USA) computer software using non-linear sig-
moid curve fitting. The associations between IL-1β con-
centrations and stent length or the AUC were analysed by 
simple linear regression analysis for continuous variables 
and by the Mann–Whitney U test for categorical variables. 
Intergroup differences were assessed by the Mann–Whit-
ney U test or one-way analysis of variance followed by 
Tukey–Kramer post-hoc analysis. A value of P < 0.05 was 
considered statistically significant.

Results

Baseline and procedural characteristics

A total of 35 patients (67.9 ± 1.5  years) were enrolled in 
this study. Table  1 shows the baseline clinical and proce-
dural characteristics. Thirty-one patients were treated by 
dual antiplatelet therapy (acetylsalicylic acid and clopi-
dogrel). Vasoconstriction to Ach (AUC) was not corre-
lated with baseline patients’ characteristics or medications 
(Table 2).

Serum IL-1β levels and coronary endothelial function

At a 10-month follow-up, vasoconstriction to Ach was sig-
nificantly greater at the segment distal to the stent than at 
the segment proximal to the stent (P < 0.01, Fig.  1a, b). 
Endothelium-independent vasodilatation to NTG proximal 
and distal to the stent was comparable with that at the ref-
erence arteries (Fig. 1c). The mean serum IL-1β level was 
0.226 ± 0.04  pg/ml (range 0–0.854  pg/ml). Simple linear 
regression analysis showed that serum IL-1β levels were 
not correlated with baseline patients’ characteristics or 
medication, although they were positively correlated with 
stent length (r = 0.36, P < 0.05, Table 2; Fig. 2). There was 
also no correlation between serum IL-1β levels and C-reac-
tive protein (data were not shown).

We divided the patients into two groups by the median 
value of serum IL-1β levels (0.152 pg/ml). We found that 
endothelium-dependent vasoconstriction was signifi-
cantly more severe in the high IL-1β group (n = 18) at the 
segments distal to the stents than in the low IL-1β group 
(n = 17, P < 0.05, Fig. 3a). At the segments proximal to the 
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stents, endothelium-dependent vasoconstriction was not 
observed in the high IL-1β (n = 13) and low IL-1β groups 
(n = 12, Fig.  3b). These results were confirmed by AUC 
analysis (Fig. 3c, d). By simple linear regression analysis, 
the AUC was positively correlated with serum IL-1β lev-
els at the segments distal to the stents (r = 0.38, P < 0.05, 
Fig.  3c), but not at the segments proximal to the stents 

(Fig. 3d). Table 3 shows AUC and serum IL-1β levels at the 
segments distal to the different types of drug-eluting stents. 
It seems that patients with sirolimus-eluting stents might 
have poorer endothelial function and higher IL-1β levels 
than others (Table 3). This finding suggested that coronary 

Table 1  Baseline clinical and procedural characteristics

Values are mean ± SE or n (%)
LDL low-density lipoprotein, HDL high-density lipoprotein, eGFR 
estimated glomerular filtration rate, BNP brain natriuretic peptide, 
ASA acetylsalicylic acid, ARB angiotensin receptor blocker, ACEI 
angiotensin-converting enzyme inhibitor, AHA American Heart Asso-
ciation, ACC American College of Cardiology, TVR targeted vessel 
revascularization, BES biolimus-eluting stent, EES everolimus-eluting 
stent, ZES zotarolimus-eluting stent, SES sirolimus-eluting stent

Average level

Clinical characteristics
 Age (years) 67.9 ± 1.5
 Male 25 (71.4%)
 Body mass index (kg/m2) 23.9 ± 0.5
 Family history of CAD 6 (16.7%)
 Hypertension 29 (82.8%)
 Systolic blood pressure (mmHg) 122.8 ± 2.4
 Diastolic blood pressure (mmHg) 73.4 ± 1.7
 Diabetes mellitus 17 (48.6%)
 Hemoglobin A1c (%) 6.3 ± 0.1
 Smoking 14 (40%)
 LDL-cholesterol (mg/dl) 89.8 ± 3.7
 HDL-cholesterol (mg/dl) 52.1 ± 1.8
 eGFR (ml/min/1.73 m2) 69.5 ± 3.0
 Pro BNP (pg/ml) 145.1 ± 33.5
 Left ventricular ejection fraction (%) 67.3 ± 1.2

Post-PCI medications (%)
 ASA 34 (97.1%)
 Clopidogrel 32 (91.4%)
 Beta-blockers 15 (42.9%)
 ARB or ACEI 23 (65.7%)
 Calcium-channel blocker 10 (28.6%)
 Nitrate 4 (11.4%)
 Statins 25 (71.4%)

AHA/ACC type B2 or C 28 (80%)
Stent site
 Left anterior descending 22 (63%)
 Left circumflex 7 (20%)
 Right coronary artery 6 (17%)

Stent
 Length (mm) 32.3 ± 3.0
 Diameter (mm) 3.1 ± 0.1
 Deployment pressure (atm) 13.9 ± 0.6

TVR 0 (0%)

Table 2  Simple linear regression analysis for determination of the 
area under the curve and serum IL-1β levels

LDL low-density lipoprotein, HDL high-density lipoprotein, eGFR 
estimated glomerular filtration rate, BNP brain natriuretic peptide, 
ASA acetylsalicylic acid, ARB angiotensin receptor blocker, ACEI 
angiotensin-converting enzyme inhibitor, AHA American Heart Asso-
ciation, ACC American College of Cardiology, TVR targeted vessel 
revascularization, BES biolimus-eluting stent, EES everolimus-eluting 
stent, ZES zotarolimus-eluting stent, SES sirolimus-eluting stent

vs AUC vs IL-1β

P value r P value r

Clinical characteristics
 Age (years) 0.28 0.19 0.12 0.26
 Male 0.92 0.86
 Body mass index (kg/m2) 0.55 0.11 0.34 0.17
 Family history of CAD 0.14 0.1
 Hypertension 0.73 0.44
 Systolic blood pressure (mmHg) 0.74 0.06 0.81 0.04
 Diastolic blood pressure (mmHg) 0.91 0.02 0.53 0.11
 Diabetes mellitus 0.1 0.26
 Hemoglobin A1c (%) 0.47 0.13 0.78 0.05
 Smoking 0.99 0.55
 LDL-cholesterol (mg/dl) 0.66 0.08 0.24 0.2
 HDL-cholesterol (mg/dl) 0.87 0.03 0.63 0.08
 eGFR (ml/min/1.73 m2) 0.32 0.17 0.08 0.3
 pro BNP (pg/ml) 0.32 0.17 1 <0.01
 Left ventricular ejection fraction 

(%)
0.24 0.2 0.35 0.16

post-PCI medications (%)
 ASA 0.24 0.08
 Clopidogrel 0.48 0.7
 beta-blockers 0.69 0.4
 ARB or ACEI 0.85 0.89
 Calcium-channel blocker 0.73 0.62
 Nitrate 0.34 0.9
 Statins 0.13 0.54

AHA/ACC type B2 or C 0.74 0.93
Stent site
 Left anterior descending 0.92 0.19
 Left circumflex 0.34 0.07
 Right coronary artery 0.38 0.79

Stent
 Length (mm) 0.15 0.25 0.04 0.36
 Diameter (mm) 0.6 0.09 0.97 <0.01
 Deployment pressure (atm) 0.3 0.18 0.26 0.2

TVR 1 1
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endothelial dysfunction at the segments distal to the stents 
could be detected by peripheral serum IL-1β levels.

Effects of mTOR inhibition on IL-1β release in vitro

To further determine the molecular mechanisms of 
endothelial dysfunction by mTOR inhibition, we exam-
ined the direct effects of sirolimus on IL-1β release, using 
cultured HUVECs and CASMCs. In HUVECs, IL-1β 
was not detected in the conditioned media at baseline and 
after treatment by sirolimus  (10−6 mol/l). However, siroli-
mus increased IL-1β release into the conditioned media in 
CASMCs (P < 0.01, sirolimus versus vehicle, Fig.  4). We 
then examined the effects of sirolimus on the transcrip-
tional levels of IL-1β in CASMCs. Sirolimus increased 
IL-1β mRNA levels in CASMCs (P < 0.05, sirolimus ver-
sus vehicle, Fig. 5a) and HUVECs (P < 0.05, sirolimus ver-
sus vehicle, Fig.  5b). In contrast, sirolimus did not affect 
protein levels of cleaved caspase-1, an active form of cas-
pase-1, in CASMCs (Fig.  5c). These results suggest that 
sirolimus increased IL-1β release via transcriptional upreg-
ulation in CASMCs.

Discussion

The novel findings of the present study are as follows. (1) 
Serum IL-1β levels were positively correlated with the 
magnitude of vasoconstriction to Ach at the segment distal 
to the DES. (2) Serum IL-1β levels were positively corre-
lated with the implanted stent length. (3) An mTOR inhibi-
tor increased mature IL-1β release in CASMCs. These find-
ings suggest that IL-1β is released at DES stent sites and 

Fig. 1  a Representative angiograms of left coronary artery (LCA) 
and right coronary artery (RCA). A biolimus-eluting stent (arrow-
head) was implanted in the proximal left anterior descending coro-
nary artery of a 59-year-old man for effort angina. Endothelium-
dependent vasoconstriction was induced by acetylcholine distal to 
the stent (black arrow) in the left anterior descending artery, but not 
in the RCA. Endothelium-independent vasodilatation is shown by 
nitroglycerine infusion (white arrow). b Changes in the area under 
the curve (AUC) in response to acetylcholine in the reference artery, 
the segment proximal to the stent, and the segment distal to the stent. 
**P < 0.01 versus distal to the stent. AU arbitrary unit. c Percentage 
of change in the vessel diameter versus baseline diameter in response 
to nitroglycerine infusion in the reference artery, the segment proxi-
mal to the stent, and the segment distal to the stent

Fig. 2  Correlations between serum IL-1β levels and stent length
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that circulating IL-1β levels are a biomarker of endothelial 
dysfunction in patients with DES implantation (Fig. 6).

IL-1β signaling might be associated with development 
of restenosis after stent placement [26]. However, because 
we excluded patients with angiographic in-stent resteno-
sis from this study, we consider that the observed increase 
in IL-1β levels was not caused by restenosis. In addition, 
the increase of serum IL-1β levels was not associated with 
clinical risk factors, medications, and lesion characteristics 
(Table 2). In our patients, we found no correlation between 
serum IL-1β levels and C-reactive protein by simple linear 

Fig. 3  Correlations between 
serum IL-1β levels and vaso-
constriction. a Pooled data of 
acetylcholine-induced vasocon-
striction at the segment distal to 
the stent in the low IL-1β group 
(n = 17) and in the high IL-1β 
group (n = 18). b Pooled data of 
acetylcholine-induced vasocon-
striction at the segment proxi-
mal to the stent in the low IL-1β 
group (n = 12) and in the high 
IL-1β group (n = 13). c Cor-
relations between serum IL-1β 
levels and the AUC in response 
to acetylcholine at the segment 
distal to the stent (n = 35). d 
Correlations between serum 
IL-1β levels and the AUC in 
response to acetylcholine at the 
segment proximal to the stent 
(n = 25). AU arbitrary unit

Table 3  Area under the curve and serum IL-1β levels at the seg-
ments distal to the different types of drug-eluting stents

Results given as mean ± SE or n

Generation Eluting stent n AUC (AU) IL-1β (pg/ml)

1st Sirolimus 2 87.5 ± 33.3 0.69 ± 0.17
2nd Zotarolimus 1 121.2 ± 0 0.10 ± 0
2nd Everolimus 17 18.2 ± 8.9 0.14 ± 0.04
2nd Biolimus 15 34.0 ± 6.1 0.27 ± 0.05

Fig. 4  mTOR inhibitor increases IL-1β release into culture media 
from CASMCs compared with vehicle. Pooled data show the effects 
of an mTOR inhibitor (sirolimus) on IL-1β concentrations in condi-
tioned media of CASMCs. Values are mean ± SEM. n = 6 per each 
group, **P < 0.01. AU arbitrary unit
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regression analysis. This finding indicated that the increase 
in serum IL-1β levels in patients with risk factors was not 
due to inflammatory diseases.

Serum IL-1β levels and endothelial dysfunction 
in patients with DES implantation

Endothelial dysfunction after DES implantation has 
become a major concern [13, 27, 28]. Several case reports 
have indicated that severe coronary spasm after DES 
implantation is probably associated with endothelial dys-
function, leading to serious cardiac events, such as myo-
cardial infarction [29], fatal arrhythmia, or sudden cardiac 
death [30]. Endothelial dysfunction after DES implantation 
may also contribute to late stent thrombosis, which is a life-
threatening complication [10, 18, 31]. A major histological 
feature of late thrombosis is abnormal endothelialisation of 
stent struts [7, 32]. Interestingly, we observed that serum 
IL-1β levels were significantly correlated with the magni-
tude of vasoconstriction to Ach at the segments distal to 
DESs, but not at the proximal segments (Fig. 3a–d).

IL-1β decreases endothelial NO synthase gene expres-
sion through inhibition of p38 phosphorylation [24, 25]. 

IL-1β also enhances production of IL-6, C-reactive protein 
[33, 34], endothelin-1 [35, 36], and superoxide anion [37], 
which contribute to endothelial dysfunction [38]. Canaki-
numab is a human monoclonal antibody targeted at IL-1β. 
Recently, the Canakinumab Anti-inflammatory Thrombosis 
Outcomes Study trial has started to determine if treatment 
by canakinumab is effective in reducing recurrent heart 
attack, stroke, and cardiac death in patients with stable cor-
onary artery disease [34].

Proinflammatory mediators contribute to endothe-
lial dysfunction. Exposure of IL-1β to rabbit carotid 
arteries and a combination of tumour necrosis factor-α, 
interferon-γ, and lipopolysaccharide added to porcine coro-
nary arteries markedly attenuates relaxation to Ach. This 
can cause abnormal vasoconstriction to serotonin or hista-
mine [21–23]. In humans, Bhagat and colleagues demon-
strated that instillation of IL-1β causes vasoconstriction in 
the dorsal hand vein of normal subjects [39]. Ikonomidis 
and colleagues showed that an IL-1 inhibitor (anakinra) 
improves flow-mediated, endothelium-dependent dilation 
of the brachial artery, coronary flow reserve, and left ven-
tricular function in patients with rheumatoid arthritis [40]. 
In our study, the observed increase in serum IL-1β was not 

Fig. 5  mTOR inhibitor acti-
vates transcription of IL-1β. 
Pooled data show the effects 
of sirolimus on IL-1β mRNA 
expression levels, which were 
normalized to those of GAPDH 
in CASMCs (a) and HUVECs 
(b). n = 7 in each group, 
*P < 0.05. AU arbitrary unit. c 
Representative immunoblots 
and pooled data showing the 
effects of sirolimus on expres-
sion levels of total caspase-1 
and cleaved caspase-1 (Asp297) 
in CASMCs
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caused by a systemic vascular response, because there was 
no relationship between serum IL-1β levels and the vaso-
motor response proximal to the DES site (Fig. 3b, d) and 
between serum IL-1β levels and vasodilation by NTG.

Carlyle et  al. showed that release of sirolimus from 
stents could be diminished within 45–60  days after stent 
implantation in porcine coronary arteries [41]. However, 
their drug concentration was detected until 6  months in 
the tissue of porcine coronary arteries [41]. There are no 
reports of residual drug concentrations in the tissue of 
human coronary arteries close to the DES site. However, 
residual effects of the drug remaining on the distal arteries 
to the stent might be present for a long time.

DES length and serum IL-1β levels

The underlying mechanisms of the impaired endothelium-
dependent vasomotor response distal to the DES site are 
not well understood. Anti-proliferative drugs are sug-
gested to be locally diffused through the vasa vasorum to 
the non-stented distal segment in DES-implanted coronary 
arteries [42]. The length of the stented segment is indepen-
dently associated with the incidence of stent thrombosis 
and death or myocardial infarction after DES implantation 

[43, 44]. The present study shows, for the first time, that 
serum IL-1β levels are also associated with the length of 
the stented segment. An increased stent site exposed by an 
mTOR inhibitor might release more IL-1β, which could 
lead to impaired endothelial function distal to the stent. 
In addition, increased local drug concentrations at stent 
regions may elicit further delay in recovery of vessels, 
especially impaired re-endothelialisation.

Inhibitors of mTOR and IL-1β release

Inhibitors of mTOR activate nuclear factor-kappa B and 
inflammasome-caspase signaling in dendritic cells [45]. 
However, the effect of mTOR inhibitors on endothelial 
cells and vascular smooth muscle cells has not been deter-
mined. To further determine the molecular mechanisms of 
endothelial dysfunction by mTOR inhibition, we examined 
the effects of sirolimus on IL-1β production using cultured 
HUVECs and CASMCs. We measured IL-1β release into 
culture media and IL-1β mRNA expression levels in these 
cells. In HUVECs, IL-1β mRNA expression levels were 
increased, although IL-1β was not detected in the condi-
tioned media with vehicle and treatment by sirolimus. Pro-
IL-1β, but not mature IL-1β, might have been formed in 
HUVECs. In contrast, sirolimus markedly increased mature 
IL-1β release into the conditioned media (Fig. 4) and IL-1β 
mRNA levels in CASMCs (Fig. 5a). The differential effects 
of an mTOR inhibitor on CASMCs and HUVECs should 
be investigated in future studies. Several studies have indi-
cated that vascular smooth muscle cells express IL-1β tran-
scripts after exposure to lipopolysaccharide [32], tumour 
necrosis factor-α, or IL-1 [14]. However, few studies have 
characterized the synthesis of mature IL-1β by vascu-
lar smooth muscle cells. The present study suggests that 
mTOR inhibitors trigger IL-1β release through transcrip-
tional activation in CASMCs, which may lead to coronary 
endothelial dysfunction distal to the stent.

Taken together, these previous findings and our results 
suggest the provocative concept that serum IL-1β levels are 
a novel biomarker of endothelial dysfunction at the seg-
ment distal to the DES. However, the causal role of IL-1β 
remains unknown.

Study limitations

There are several limitations in our study. First, our study 
ended at 10  months after DES implantation. Therefore, 
whether increased serum IL-1β levels persist beyond 
10 months and affect the clinical outcome remain unknown. 
To overcome these limitations, a prospective, randomized, 
multicentre, long-term, follow-up study is required. Sec-
ond, we were unable to show the role of the polymer in 
cultured HUVECs or CASMCs. The polymer may also be 

Fig. 6  Summary of the mechanisms of the mTOR-IL-1β signaling 
pathway in coronary endothelial dysfunction after DES implantation 
in the present study
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important in the process of endothelial dysfunction in DES-
implanted coronary arteries. Third, we were not able to sta-
tistically analyze endothelial dysfunction and serum IL-1β 
levels in the different types of stent, due to the insufficient 
number of subjects (Table 3). Fourth, we were not able to 
observe a direct connection between local IL-1β levels and 
endothelial dysfunction in our study population. This issue 
also needs to be clarified in future studies. Fifth, we have 
no data regarding the allergic biomarkers to drug or poly-
mer in our study population.

Conclusion

This study shows that serum IL-1β levels are associated 
with coronary endothelial dysfunction distal to the stent at 
10 months after DES implantation.

Impact on daily practice

Our study suggests that serum IL-1β levels are a promis-
ing biomarker and a target for prevention and treatment of 
coronary endothelial dysfunction after DES implantation.
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