1	Characteristics of Nephropathy in Severely Obese Japanese Patients Complicated with Type 2
2	Diabetes Mellitus: A Cross-sectional Cohort Study
3	
4	Noboru Kurinami ^{a,d} , Seigo Sugiyama ^{a,b} , Hiroko Ijima ^a , Akira Yoshida ^a , Kunio Hieshima ^a , Fumio
5	Miyamoto ^a , Keizo Kajiwara ^a , Katsunori Jinnouchi ^a , Tomio Jinnouchi ^a , Masatoshi Nomura ^d , Hideaki
6	Jinnouchi ^{a,c}
7	
8	^a Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
9	^b Division of Cardiovascular Medicine, Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
10	^c Division of Preventive Cardiology, Department of Cardiovascular Medicine, Kumamoto University
11	Hospital, Kumamoto, Japan
12	^d Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University
13	School of Medicine
14	
15	
16	
17	

18 Corresponding Author: Masatoshi Nomura,

- 1 Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School
- 2 of Medicine67. Asahimachi, Kurume Shi, Fukuoka Ken 830-0011, Japan.
- 3 Phone: +81-0942-31-7563; Fax: +81-0942-35-8943
- 4 Email: nomura@med.kurume-u.ac.jp
- 5
- 6
- 7 Word count: 1733
- 8 Number of tables: 3
- 9 Number of figures: 2
- 10 Abstract word count: 222

1 [Abstract]

2	purpose: We aimed to investigate the characteristics of kidney disease in severely obese Japanese patients					
3	with type 2 diabetes mellitus (T2DM).					
4	Methods: This was a cross-sectional study of severely obese patients (body mass index \geq 35 kg/m ²) with					
5	T2DM treated at Jinnouchi Hospital, Kumamoto, Japan.					
6	Results: A total of 3128 T2DM patients visited the hospital during the survey period, of whom 55					
7	patients (1.7%) were severely obese and 50 patients were enrolled. In terms of diabetic nephropathy					
8	(DN), twenty-five patients were stage 1 (non-DN, 50.0%), sixteen were stage 2 (32.0%), five were stage 3					
9	(10.0%), and four were stage 4 (8.0%). There were significant differences in the presence of urinary					
10	occult blood (P=0.01) and history of cardiovascular disease (CVD) (P=0.04) between patients with DN					
11	(stages 2-4) and those without DN (stage 1). The presence of urinary occult blood (odds ratio, 4.96; 95%					
12	confidence interval, 1.32–18.6; $P=0.02$) was significantly associated with the presence of DN according					
13	to multivariate logistic regression analysis with forced inclusion of age, sex, and CVD history.					
14	Conclusions: Urinary occult blood may be a significant independent factor associated with the presence of					
15	nephropathy in severely obese Japanese patients with T2DM. The presence of urinary occult blood could					
16	thus be an important pathogenic factor in obesity-related nephropathy in patients with T2DM.					
17	Keywords: obesity, nephropathy, type 2 diabetes mellitus, urinary occult blood					

1. Introduction

2	Obesity and type 2 diabetes mellitus (T2DM) are closely related, and both are risk factors for the onset
3	of chronic kidney disease. Diabetes is the leading cause of dialysis in Japan, while obesity is a well
4	recognized risk factor for both T2DM and hypertension, both of which are leading causes of chronic kidney
5	disease (CKD) and end-stage renal disease (ESRD) [1]. It has been disclosed by the kidney biopsies for
6	obesity patients complicated with proteinuria or renal insufficiency that obesity-related glomerulopathy
7	(ORG) and diabetic nephropathy (DN) were present in 40% and 22% of specimens, respectively [2]. The
8	earliest clinical manifestation of DN is microalbuminuria that, over time, can progress to overt proteinuria
9	[3-5], but ORG has also been suggested to have a higher rate of decline of glomerular filtration rate (GFR)
10	and progress faster to ESRD [6]. Obesity also increases the risk of end-stage renal failure, even after
11	accounting for smoking, hypertension, and diabetes [7], and thus has attracted attention via ORG and
12	obesity-related kidney disease [8, 9]. Previous reports also suggested a relationship between visceral fat
13	obesity and the onset of chronic kidney disease [10, 11]. Because obesity and T2DM frequently occur
14	together, nephropathy may be accelerated in obese patients with T2DM.
15	To the best of our knowledge, there have been no prior reports of the effect of obesity on kidney
16	disorders in Japanese patients with T2DM. We therefore investigated the clinical factors associated with
17	the presence of nephropathy in obese patients with T2DM in a cross-sectional study of kidney disorders
18	in severely obese patients treated for diabetes at Jinnouchi Hospital, Kumamoto, Japan.

2. Subjects and Methods

2.1. Subjects and protocol

3	This was a cross-sectional study of severely obese patients (body mass index [BMI] \geq 35 kg/m ²) with
4	T2DM recruited at Jinnouchi Hospital, Kumamoto, Japan, from August to November 2018. The inclusion
5	criteria were T2DM and BMI \geq 35 kg/m ² . Patients receiving artificial hemodialysis therapy were
6	excluded. Because autoimmune or malignant diseases, heart and hepatic failure, have been known to be
7	associated with kidney damage, we also excluded patients with these diseases. This study was conducted
8	in accordance with the Declaration of Helsinki and the study protocol was approved by the Human Ethics
9	Review Committee of Jinnouchi Hospital. This study was registered under the UMIN protocol
10	registration system (ID: UMIN000038305).
11	
12	2.2. Assessment of nephropathy
13	Urinary albumin and creatinine (Cr) concentrations were measured using spot urine, and the urinary
14	albumin-to-creatinine ratio (UACR) was calculated. According to the Japan Diabetes Society criteria,
15	diabetic nephropathy (DN) stage was determined based on the estimated GFR (eGFR) and the UACR as
16	follows [12]: stage 1, non-DN, normoalbuminuria (UACR <30 mg/gCr and eGFR ≥30 mL/min/1.73 m ²);

1	macroalbuminuria (UACR \geq 300 mg/gCr and eGFR \geq 30 mL/min/1.73 m ²); and stage 4, kidney failure
2	(eGFR <30 mL/min/1.73 m ²). Patients with stage 5 DN (dialysis therapy) were excluded in advance.
3	Participants with UACR \geq 30 mg/gCr and/or eGFR < 30 mL/min/1.73 m ² were categorized as the DN
4	group in the present study [13].
5	
6	2.3. Measurement of body fat and muscle masses by bioelectrical impedance
7	We measured body composition, including body fat mass and body fat percentage, as described
8	previously [14, 15]. Elemental body composition was measured using an InBody770 direct segmental
9	multi-frequency bioelectrical impedance analyzer (InBody770; Biospace, Seoul, Korea), and total muscle
10	mass, skeletal muscle mass, total fat mass, and body fat percentage were assessed. The analyzer processed
11	30 impedance measurements using six different frequencies (1, 5, 50, 250, 500, 1000 kHz) on each of five
12	body segments (right arm, left arm, trunk, right leg, left leg), and 15 reactance measurements using
13	tetrapolar 8-point tactile electrodes using three different frequencies (5, 50, 250 kHz) on each of the five
14	above-mentioned body segments [16, 17].
15	
16	2.4. Blood and urine sampling and measurement of clinical parameters
17	Blood and urine samples were collected and analyzed at hospital visits. Blood samples were collected
18	from the antecubital vein. Blood and urine analyses were conducted in the hospital laboratory to

1	determine hemoglobin (Hb) A1c, fasting plasma glucose (FPG), total cholesterol, low-density lipoprotein
2	(LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, non-HDL cholesterol, triglycerides,
3	eGFR, blood urea nitrogen (BUN), Cr, urinary albumin, urinary Cr, and urine occult blood.
4	
5	2.5. Statistical analysis
6	The normality of distribution for continuous data was assessed by the Shapiro–Wilk test. Normally
7	distributed data were expressed as mean \pm standard deviation, and data with skewed distributions as
8	median (interquartile range). Categorical data were presented as frequencies and percentages. Differences
9	in categorical variables between two groups were tested by Fisher's exact test, and differences in
10	continuous variables were analyzed by unpaired <i>t</i> -test or Mann–Whitney U test, as appropriate.
11	Significant factors for the presence of DN were initially identified by simple logistic regression. For
12	multivariate logistic regression analysis, we created a forced-inclusion model adjusted by age, sex, CVD
13	history, and urinary occult blood. A P value <0.05 indicated statistical significance. All statistical
14	analyses were performed using SPSS version 23 (SPSS Inc., Tokyo, Japan).

3. Results

3.1. Subjects

3	A total of 3128 T2DM patients visited the hospital during the survey period, of whom 55 patients (1.7%)
4	were severely obese and five patients (three patients with a history of mammary cancer,1 patient with
5	endometrial cancer, and 1 patient with heart failure) were excluded. The clinical backgrounds of the
6	patients are shown in Table 1. Details of the respective DN stages are shown in Figure 1. Twenty-five
7	patients (50.0%) were stage 1 (non-DN), sixteen were stage 2 (32.0%), five were stage 3 (10.0%), and
8	four were stage 4 (8.0%). A previous large nationwide study of Japanese patients with T2DM found that
9	58% had no DN and 42% had DN [18], which was similar to the prevalence of DN in the current study.
10	Among the included patients, 43 (86.0%) had hypertension and were treated with calcium channel
11	antagonists (n=28, 56.0%) and/or angiotensin II receptor blockers (ARBs) (n=27, 54.0%).
12	
13	3.2. Comparison of patients with and without DN
14	We compared patients with and without DN. Significantly more patients in the DN group had urinary
15	occult blood ($P=0.01$) (Fig.2) and a history of CVD ($P=0.04$) (Table 2). Although there was no statistical
16	difference, HbA1c levels tended to be higher in the DN group (Table 2).

3.3. Logistic regression analysis for presence of DN

2	Simple logistic regression analysis for the presence of DN identified urinary occult blood (odds ratio
3	[OR], 5.63; 95% confidence interval [CI], 1.65–19.2; P<0.01) and CVD history (OR, 6.47; 95%CI, 1.23–
4	34.0; P=0.03) were factors significantly associated with the presence of DN (Table 3). The presence of
5	urinary occult blood (OR,4.96; 95%CI, 1.32–18.6; P=0.02) was also a significant factor for the presence
6	of DN in multivariate logistic regression analysis with forced inclusion of age, sex, and CVD history
7	(Table 3). The OR of hematuria for end-stage renal failure has previously been reported as 1.2, and the
8	incidence of hematuria increases in patients with advanced renal dysfunction [19]. We therefore
9	performed simple logistic regression analysis for the presence of DN in a subgroup of patients without
10	kidney failure (eGFR \geq 30 ml/min/1.73 m ²), and showed that the presence of urinary occult blood was still
11	a significant factor predicting DN (n=46, OR,4.22; 95%CI, 1.20–14.7; P=0.03).

4. Discussion

2	Among 3128 Japanese patients with T2DM who visited our hospital, 55 (1.7%) were severely obese
3	(BMI \geq 35 kg/m ²). Furthermore 10 (0.3%) had a BMI of \geq 40 kg/m ² , meeting the globally proposed the
4	candidates for ORG. The incidence of obesity-related kidney disease was thus low among Japanese
5	patients with T2DM.
6	The prevalence of DN among severely obese Japanese patients with T2DM in the current study
7	was not significantly different from that in Japanese T2DM patients as a whole [18]. This may have been
8	due to the low number of patients with a BMI \geq 40 kg/m ² who would meet the criteria for ORG, and the
9	high proportion of cases already treated with sodium glucose co-transporter 2 (SGLT2) inhibitors [20] or
10	glucagon-like peptide-1 (GLP-1) receptor agonists [21], both of which have renoprotective effects.
11	This cross-sectional study provided the first evidence for urinary occult blood as a significant
12	factor related to the presence of nephropathy in severely obese Japanese patients with complicating
13	T2DM. The frequency of hematuria reportedly increases with age in women [22] and we therefore
14	adjusted for age and sex, but the results remained the same. The results were also similar in a sub-group
15	analysis excluding patients with kidney failure (stage 4). Urinary occult blood/hematuria are generally not
16	considered to be common features and are thus not recognized as important findings in DN. It has the
17	histological diagnostic feature of diabetic glomerulosclerosis [23], and ORG is reportedly characterized
18	histologically by glomerular hypertrophy and secondary focal segmental glomerulosclerosis (FSGS) [24].

1	The high frequency of microscopic hematuria in FSGS suggests that occult blood in the urine may also
2	occur in ORG, and our results were pathologically consistent with these observations.
3	HbA1c levels tended to be high in the DN group in the current study. This suggests that strict
4	control of blood glucose levels in obese patients with T2DM may help to prevent the progressive
5	worsening of renal function in obesity-related kidney disease. Renal dysfunction may progress in patients
6	without DN but positive for urinary occult blood, and future prospective studies of renal function changes
7	in these patients may reveal a clinical significance of urinary occult blood in obese patients with
8	complicating T2DM.
9	The present study had several limitations. No renal biopsies were performed and there was no
10	detailed differentiation between the various forms of nephritis. Furthermore, therapeutic effects were not
11	assessed. This was a single-center study with a small sample size, and further larger, multicenter studies
12	are needed to confirm the current findings. Because this study design is hypothesis exploratory
13	research, we didn't pre-calculate a hypothetical sample size in this study. All the patients in this study
14	were already receiving several medications with renoprotective effects, such as SGLT2 inhibitors, GLP-1
15	receptor agonists, or ARBs, and there was therefore no clinical information for untreated patients.
16	In conclusion, this study revealed that urinary occult blood was a significant independent factor
17	associated with the presence of DN in severely obese Japanese patients complicated with T2DM. eGFR,
18	proteinuria, and albuminuria are already recognized as important factors in the daily clinical management

1	l of patients with	diabetic kidney dise	ease, and we propose that	t the presence of urin	nary occult blood may al	sc
	1	2	· · · ·	1	2	

- 2 be an important and useful pathogenic factor of nephropathy in severely obese patients with T2DM.
- 3

4 Funding

5 This research did not receive any specific grant from funding agencies in the public, commercial, or not-

6 for-profit sectors.

7

8 Compliance with ethical standards Conflict of interest

- 9 HJ has received honoraria from Novo Nordisk, Sanofi, AstraZeneca Pharmaceuticals, Astellas Pharma,
- 10 Boehringer Ingelheim, Daiichi-Sankyo, Eli Lilly, Takeda, and Novartis Pharmaceuticals. SS has received
- 11 honoraria from MSD, AstraZeneca Pharmaceuticals, Ono Pharmaceutical, Bayer Yakuhin, Ltd., and Novo
- 12 Nordisk. There are no other potential conflicts of interest relevant to this article.
- 13

14 Ethical approval

- 15 The article does not contain any studies with animals performed by any of the authors. The study was
- 16 conducted in accordance with the Declaration of Helsinki and the study protocol was approved by the
- 17 Human Ethics Review Committee of Jinnouchi Hospital.

1 Informed consent

2 Informed consent was obtained from all individual participants included in the study.

3

4 Acknowledgements

- 5 We thank Susan Furness, PhD, from Edanz Group (https://en-author-services.edanzgroup.com/) for editing
- 6 a draft of this manuscript.

1 **References**

- 3 USRDS 2006 annual data report. 2006 NIDDK The National Institutes of Health. 2006
- 4 [2] Salvatore SP, Chevalier JM, Kuo SF, Audia PF, Seshan SV.:Kidney disease in patients with obesity: It
- 5 is not always obesity-related glomerulopathy alone. Obes Res Clin Pract.11(5), 597-606 (2017)
- 6 [3] Jauregui A, Mintz DH, Mundel P, Fornoni A.: Role of altered insulin signaling pathways in the
- 7 pathogenesis of podocyte malfunction and microalbuminuria. Curr Opin Nephrol Hypertens. 18(6), 539-
- 8 45 (2009)
- 9 [4] de Boer IH, Sibley SD, Kestenbaum B, et al.: Central obesity, incident microalbuminuria, and change
- 10 in creatinine clearance in the epidemiology of diabetes interventions and complications study. J Am Soc
- 11 Nephrol. 18(1), 235–243 (2007)
- 12 [5] Eijkelkamp WB, Zhang Z, Remuzzi G, et al.: Albuminuria is a target for renoprotective therapy
- 13 independent from blood pressure in patients with type 2 diabetic nephropathy: post hoc analysis from the
- 14 Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. J Am
- 15 Soc Nephrol. 18(5), 1540–6(2007)
- 16 [6] Iseki K, Ikemiya Y, Kinjo K, Inoue T, Iseki C, Takishita S.: Body mass index and the risk of
- 17 development of end-stage renal disease in a screened cohort. Kidney Int. 65(5), 1870–6 (2004)

- 1 [7] Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS.: Body mass index and risk for end-stage
- 2 renal disease. Ann. Intern. Med. 144(1), 21–8 (2006)
- 3 [8] Mathew AV, Okada S, Sharma K.: Obesity related kidney disease. Curr. Diabetes Rev. 7(1), 41–9

4 (2011)

- 5 [9] Kambham N, Markowitz GS, Valeri AM, Lin J, D'Agati VD.: Obesity-related glomerulopathy: an
- 6 emerging epidemic. Kidney Int. 59(4), 1498–509 (2001)
- 7 [10] Chandie Shaw PK, Berger SP, Mallat M, Frölich M, Dekker FW, Rabelink TJ.: Central obesity is an
- 8 independent risk factor for albuminuria in nondiabetic South Asian subjects. Diabetes Care. 30(7), 1840–
- 9 4 (2007)
- 10 [11] Chang A, Batch BC, McGuire HL, Vollmer WM, Svetkey LP, Tyson CC, et al.: Association of a
- 11 reduction in central obesity and phosphorus intake with changes in urinary albumin excretion: the
- 12 PREMIER study. Am. J. Kidney Dis. 62(5), 900–7 (2013)
- 13 [12] Haneda M, Utsunomiya K, Koya D, Babazono T, Moriya T, Makino H, et al.: A
- 14 new Classification of Diabetic Nephropathy 2014: a report from Joint Committee on Diabetic
- 15 Nephropathy. J Diabetes Investig. 6(2), 242–6 (2015)
- 16 [13] Ninomiya H, Katakami N, Matsuoka TA, Takahara M, Nishizawa H, Maeda N, et al.: Association
- 17 between poor psychosocial conditions and diabetic nephropathy in Japanese type 2 diabetes patients: A
- 18 cross-sectional study. J. Diabetes Investig. 9(1), 162–172 (2018)

1	[14] Kurinami N, Sugiyama S, Nishimura H, Morita A, Yoshida A, et al.: Clinical factors associated with
2	initial decrease in body-fat percentage induced by add-on sodium-glucose co-transporter 2 inhibitors in
3	patients with type 2 diabetes mellitus. Clin. Drug Invest. 38, 19–27 (2018)
4	[15] Kurinami N, Sugiyama S, Yoshida A, Hieshima K, Miyamoto F, et al.: Dapagliflozin significantly
5	reduced liver fat accumulation associated with a decrease in abdominal subcutaneous fat in patients with
6	inadequately controlled type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 142, 254-63 (2018)
7	[16] Cha K, Chertow GM, Gonzalez J, Lazarus JM, Wilmore DW.: Multifrequency bioelectrical
8	impedance estimates the distribution of body water. J. Appl. Physiol. 79, 1316–9 (1995)
9	[17] Cha K, Shin S, Shon C, Choi S, Wilmore DW.: Evaluation of segmental bioelectrical impedance
10	analysis (SIBA) for measuring muscle distribution. J. ICHPER SD-ASIA. 11-4 (1997)
11	[18] Yokoyama H, Kawai K, Kobayashi M; Japan Diabetes Clinical Data Management Study Group.:
12	Microalbuminuria is common in Japanese type 2 diabetic patients: a nationwide survey from the Japan
13	Diabetes Clinical Data Management Study Group (JDDM 10). Diabetes Care 30(4), 989–92 (2007)
14	[19] Iseki K, Ikemiya Y, Iseki C, Takishita S.: Proteinuria and the risk of developing end-stage renal
15	disease. Kidney Int. 63(4), 1468–74 (2003)
16	[20] Sugiyama S, Jinnouchi H, Yoshida A, Hieshima K, Kurinami N, Jinnouchi K, et al.: Renoprotective
17	effects of additional SGLT2 inhibitor therapy in patients with type 2 diabetes mellitus and chronic kidney

1	disease stages 3b-4: A real world report from a Japanese specialized diabetes care center. J. Clin. Med.
2	Res. 11(4), 267–74 (2019)
3	[21] Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al.: Liraglutide
4	and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375(4), 311-22 (2016)
5	[22] Hagen EC, Stegeman CA, D'Amaro J, Schreuder GM, Lems SP, Tervaert JW, et al.: Decreased
6	frequency of HLA-DR13DR6 in Wegener's granulomatosis. Kidney Int. 48(3), 801–5 (1995).
7	[23] Moriya T, Suzuki Y, Inomata S, Iwano M, Kanauchi M, Haneda M.: Renal histological
8	heterogeneity and functional progress in normoalbuminuric and microalbuminuric Japanese patients with
9	type 2 diabetes. BMJ Open Diabetes Res. Care 2(1), e000029 (2014)
10	[24] D'Agati VD, Chagnac A, de Vries AP, Levi M, Porrini E, Herman-Edelstein M, Praga M.: Obesity-
11	related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol. 12(8),

12 453-71 (2016) Fig. 1 Proportions patients with different stages of nephropathy based on eGFR and UACR. eGFR: estimated glomerular filtration

rate; UACR: urine albumin-to-creatinine ratio

Fig. 2 Prevalence of DN and urinary occult blood. DN: diabetic nephropathy; T2DM: type 2 diabetes mellitus

Proportions patients with different stages of nephropathy based on eGFR and UACR. eGFR: estimated glomerular filtration rate; UACR: urine albumin-to-creatinine ratio.

Figure2

Prevalence of DN and urinary occult blood. DN: diabetic nephropathy; T2DM: type 2 diabetes mellitus

Table 1 Baseline clinical characteristics

	all (N=50)	Stage 1 (N=25, 50%)	Stage 2 (N=16, 32%)	Stage 3 (N=5, 10%)	Stage 4 (N=4, 8%)
Male (%)	21 (42.0%)	10 (40.0%)	8 (50.0%)	3 (60.0%)	0 (0.0%)
Age (years)	50.0 ± 12.3	50.0 ± 12.3	59.9 ± 11.6	44.4 ± 15.92	58 ± 10.3
Height (cm)	162.1 ± 10.2	163.3 ± 9.1	161.3 ± 9.2	166.08 ± 18.59	153.45 ± 3.91
Weight (kg)	100.4 ± 13.7	101.8 ± 12.9	97.9 ± 11.9	107.34 ± 22.66	92.65 ± 11.19
Muscle quantity (kg)	49.0 (43.9–61.0)	49.0 (44.9–62.6)	50.2 (42.4-60.9)	60.8 (49.8–69.3)	42.7 (41.33–45.13)
Body fat quantity (kg)	44.7 ± 6.7	45.5 ± 6.7	43.5 ± 5.3	42.9 ± 10.03	46.53 ± 8.99
Waist circumference (cm)	116.6 ± 7.8	115.8 ± 8.0	114.8 ± 5.7	121.4 ± 7.23	122.83 ± 11.57
BMI (kg/m ²)	37.7 (36.1–39.3)	37.7 (36.4–39.4)	37.5 (35.7–38.6)	39.27 (35.48-41.47)	38.47 (36.8–40.92)
Body fat percentage (%)	46.3 (39.4–50.3)	46.3 (40.4–49.7)	44.5 (39.7–50.4)	35.0 (33.4–51.3)	0.45.0 (41.0-50.5)
BMFR	1.10 (0.94–1.46)	1.10 (0.96–1.39)	1.18 (0.93–1.44)	1.75 (0.9–1.88)	1 (0.93–1.03)
Urinary albumin (mg/gCr)	30.3 (11.2–98.6)	11.2 (6.7–16.5)	59.1 (45.0–116.6)	556.8 (500.62-2539.8)	1245.13 (664.28–3392.07)
Serum BUN (mg/dL)	11.8 (10.0–14.4)	11.3 (9.9–13.3)	12.0 (10.3–13.0)	10.9 (9.8–19.4)	27.15 (25.13–28.93)
Serum creatinine (mg/dL)	0.73 (0.61–0.89)	0.74 (0.62–0.81)	0.60(0.58-0.80)	0.64 (0.6–0.85)	2.24 (2.11–2.46)
eGFR (ml/min/1.73 m ²)	74.8 ± 24.8	78.1 ± 17.1	81.9 ± 20.0	80.7 ± 28.32	18.73 ± 5.19
Diabetes duration (year)	9.0 (4.3–15.8)	6.0 (2.0–11.0)	8.5 (4.8–13.5)	10.0 (6.0–13.0)	19.5 (18.0–13.0)
Hemoglobin A1c (%)	7.5 (6.5–8.5)	6.9 (6.5–7.6)	7.6 (6.4–8.2)	8 (6.6–10.1)	8.6 (8.45–9.5)
Total cholesterol (mg/dL)	165 (150.3–182.5)	156 (150–177)	171 (151–197)	181 (156–183)	157 (147.25–170.25)
Triglyceride (mg/dL)	155 (110.5–228.8)	132 (110–177)	146 (116.5–177)	236 (176–236)	276.5 (243.75–381.75)
HDL cholesterol (mg/dL)	44.9 ± 10.8	46.8 ± 11.9	43.9 ± 8.6	46.4 ± 12.5	35.75 ± 6.55
LDL cholesterol (mg/dL)	89.6 ± 27.5	85.8 ± 26.1	99.0 ± 24.8	96.6 ± 39.56	67 ± 20.46
Non-HDL cholesterol (mg/dL)	115 (103.3–138.3)	110 (101–127)	129 (19.8–142.5)	130 (99 - 151)	124 (108.5–39.5)
Systolic BP (mm Hg)	130.6 ± 13.5	129.3 ± 12.4	132.8 ± 10.3	142.2 ± 19.7	114 ± 8.3
Diastolic BP (mm Hg)	78.0 ± 9.8	76.7 ± 8.3	81.0 ± 11.9	82.8 ± 6.8	68.5 ± 5.3
Urine occult blood (%)	22 (44.0%)	6 (24.0%)	9 (56.3%)	3 (60.0%)	2 (50.0%)
Leukocyturia (%)	6 (12.0%)	2 (8.0%)	2 (12.5%)	0 (0.0%)	2 (50.0%)
Current smoking (%)	15 (30.0%)	6 (24.0%)	5 (31.3%)	2 (40.0%)	2 (50.0%)

CVD history (%)	11 (22.0%)	2 (8.0%)	3 (18.8%)	3 (60.0%)	3 (75.0%)
Retinopathy (%)	14 (28.0%)	5 (20.0%)	5 (31.3%)	0 (0.0%)	4 (100.0%)
Neuropathy (%)	2 (4.0%)	1 (4.0%)	0 (0.0%)	1 (20.0%)	0 (0.0%)
ARB (%)	27 (54.0%)	14 (56.0%)	8 (50.0%)	3 (60.0%)	2 (50.0%)
CCB (%)	28 (56.0%)	11 (44.0%)	10 (62.5%)	3 (60.0%)	4 (100.0%)
Statin (%)	37 (74.0%)	18 (72.0%)	12 (75.0%)	3 (60.0%)	4 (100.0%)
Anti-diabetic medicines (%)					
SGLT2 inhibitor (%)	37 (74.0%)	19 (76.0%)	10 (62.5%)	4 (80.0%)	4 (100.0%)
GLP-1 receptor agonist (%)	19 (38.0%)	12 (48.0%)	4 (25.0%)	1 (20.0%)	2 (50.0%)
DPP-4 inhibitor (%)	12 (24.0%)	7 (28.0%)	2 (12.5%)	3 (60.0%)	0 (0.0%)
Metformin (%)	29 (58.0%)	12 (48.0%)	11 (68.8%)	3 (60.0%)	3 (75.0%)
Thiazolidinedione (%)	3 (6.0%)	2 (8.0%)	1 (6.3%)	0 (0.0%)	0 (0.0%)
Sulfonylureas (%)	8 (16.0%)	6 (24.0%)	1 (6.3%)	1 (20.0%)	0 (0.0%)
Glinide (%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Alpha-glucosidase inhibitor (%)	3 (6.0%)	3 (12.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Insulin (%)	19 (38.0%)	11 (44.0%)	5 (31.3%)	1 (20.0%)	2 (50.0%)

BMI: body mass index; BMFR: body muscle to fat ratio; BUN: B-type natriuretic peptide; eGFR: estimated glomerular filtration rate; HDL: high-density lipoprotein; LDL: low-density lipoprotein; BP: blood pressure; CVD: cardiovascular disease; ARB: angiotensin II receptor blocker; CCB: calcium channel blocker; SGLT2: sodium glucose co-transporter 2; GLP-1: glucagon-like peptide-1; DPP-4: dipeptidyl peptidase-4.

Table 2 Comparison between patients with and without diabetic nephropathy

	all (N=50) Non-DN group (N=25, 50%)		DN group (N=25, 50%)	P value
Male (%)	21 (42.0%)	10 (40.0%)	11 (44.0%)	1.0000
Age (years)	50.0 ± 12.3	50.0 ± 12.3	50.1 ± 12.5	0.9639
Height (cm)	162.1 ± 10.2	163.3 ± 9.1	161.0 ± 11.3	0.4309
Weight (kg)	100.4 ± 13.7	101.8 ± 12.9	98.9 ± 14.5	0.4658
Muscle quantity (kg)	49.0 (43.9–61.0)	49.0 (44.9–62.6)	48.5 (41.6–60.8)	0.7237
Body fat quantity (kg)	44.7 ± 6.7	45.5 ± 6.7	43.9 ± 6.8	0.3956
Waist circumference (cm)	116.6 ± 7.8	115.8 ± 8.0	117.4 ± 7.6	0.4844
BMI (kg/m ²)	37.7 (36.1–39.3)	37.7 (36.4–39.4)	37.6 (35.7–39.3)	0.9951
Body fat percentage (%)	46.3 (39.4–50.3)	46.3 (40.4–49.7)	46.6 (39.3–50.9)	0.9327
BMFR	1.10 (0.94–1.46)	1.10 (0.96–1.39)	1.09 (0.92–1.47)	0.8206
Diabetes duration (year)	9.0 (4.3–15.8)	6.0 (2.0–11.0)	12.0 (6.0–16.0)	0.1452
Hemoglobin A1c (%)	7.5 (6.5–8.5)	6.9 (6.5–7.6)	8.0 (6.6–8.7)	0.0943
Total cholesterol (mg/dL)	165 (150.3–182.5)	156 (150–177)	168 (151–187)	0.2813
Triglyceride (mg/dL)	155 (110.5–228.8)	132 (110–177)	174 (122–236)	0.1575
HDL cholesterol (mg/dL)	44.9 ± 10.8	46.8 ± 11.9	43.12 ± 9.4	0.2372
LDL cholesterol (mg/dL)	89.6 ± 27.5	85.8 ± 26.1	93.4 ± 28.9	0.3338
Non-HDL cholesterol (mg/dL)	115 (103.3–138.3)	110 (101–127)	129 (109–150)	0.1703
Systolic BP (mm Hg)	130.6 ± 13.5	129.3 ± 12.4	131.8 ± 14.7	0.5366
Diastolic BP (mm Hg)	78.0 ± 9.8	76.7 ± 8.3	79.4 ± 11.2	0.3461
Urine occult blood (%)	22 (44.0%)	6 (24.0%)	16 (64.0%)	0.0096
Leukocyturia (%)	6 (12.0%)	2 (8.0%)	4 (16.0%)	0.6671
ARB (%)	27 (54.0%)	14 (56.0%)	13 (52.0%)	1.0000
CCB (%)	28 (56.0%)	11 (44.0%)	17 (68.0%)	0.1536
Statin (%)	37 (74.0%)	18 (72.0%)	19 (76.0%)	1.0000
Current smoking (%)	15 (30.0%)	6 (24.0%)	9 (36.0%)	0.5380
CVD History (%)	11 (22.0%)	2 (8.0%)	9 (36.0%)	0.0374
Retinopathy (%)	14 (28.0%)	5 (20.0%)	9 (36.0%)	0.3451
Neuropathy (%)	2 (4.0%)	1 (4.0%)	1 (4.0%)	1.0000
SGLT2 inhibitor (%)	37 (74.0%)	19 (76.0%)	18 (72.0%)	1.0000
GLP-1 analog (%)	19 (38.0%)	12 (48.0%)	7 (28.0%)	0.2436
DPP-4 inhibitor (%)	12 (24.0%)	7 (28.0%)	5 (20.0%)	0.7416
Metformin (%)	29 (58.0%)	12 (48.0%)	17 (68.0%)	0.2516
Thiazolidinedione (%)	3 (6.0%)	2 (8.0%)	1 (4.0%)	1.0000
Sulfonylureas (%)	8 (16.0%)	6 (24.0%)	2 (8.0%)	0.2467
Glinide (%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	-
Alpha-glucosidase inhibitor (%)	3 (6.0%)	3 (12.0%)	0 (0.0%)	0.2347
Insulin (%)	19 (38.0%)	11 (44.0%)	8 (32.0%)	0.5607

DN: diabetic nephropathy; BMI: body mass index; BMFR: body muscle to fat ratio; BUN: B-type natriuretic peptide; eGFR: estimated glomerular filtration rate; HDL: high-density lipoprotein; LDL: low-density lipoprotein; BP: blood pressure; CVD: cardiovascular disease; ARB: angiotensin

II receptor blocker; CCB: calcium channel blocker; SGLT2: sodium glucose co-transporter 2; GLP-1: glucagon-like peptide-1; DPP-4: dipeptidyl peptidase-4.

Table 3 Logistic regression analysis for presence of diabetic nephropathy

	Simple logistic			Multivariate logistic			
	regression analysis			regression analysis			
	OR	95% CI	P value	OR	95% CI	P value	
Male	0.85	0.28–2.61	0.77	0.85	0.22-3.22	0.81	
Age	1.00	0.96–1.05	0.96	0.99	0.94–1.05	0.79	
Height	0.98	0.92-1.03	0.42				
Weight	0.98	0.94–1.03	0.49				
Muscle quantity	0.99	0.94–1.04	0.72				
Body fat quantity	0.96	0.88 - 1.05	0.39				
Waist circumference	1.03	0.95–1.10	0.48				
BMI	1.00	0.79–1.27	1.00				
Body fat percentage	1.00	0.91 - 1.09	0.93				
BMFR	1.22	0.23-6.56	0.82				
Diabetes duration	1.05	0.98–1.13	0.15				
Hemoglobin A1c	1.40	0.94–2.10	0.10				
Total cholesterol	1.01	0.99–1.03	0.28				
Triglyceride	1.00	1.00-1.01	0.18				
HDL cholesterol	0.97	0.92 - 1.02	0.23				
LDL cholesterol	1.01	0.99–1.03	0.33				
non-HDL cholesterol	1.01	0.99–1.03	0.15				
Systolic BP	1.01	0.97-1.06	0.53				
Diastolic BP	1.03	0.97-1.09	0.34				
Urine occult blood	5.63	1.65–19.2	< 0.01	4.96	1.32–18.6	0.02	
Leukocyturia	2.20	0.35-4.37	0.39				
ARB	0.85	0.28–2.59	0.78				
CCB	2.70	0.85 - 8.57	0.09				
Statin	1.23	0.35-4.37	0.75				
Current smoking	1.78	0.52-6.09	0.36				
CVD history	6.47	1.23–34.0	0.03	5.69	0.86–37.8	0.07	
Retinopathy	2.25	0.63-8.06	0.22				
Neuropathy	1.00	0.06–16.9	1.00				
SGLT2 inhibitor	0.81	0.23–2.88	0.75				
GLP-1 analog	0.42	0.13–1.36	0.15				
DPP-4 inhibitor	0.64	0.17–2.39	0.51				
Metformin	2.30	0.73-7.27	0.16				
Thiazolidinedione	0.48	0.04–5.65	0.56				
Sulfonylureas	0.28	0.05-1.53	0.14				
Glinide	-	-	-				
Alpha-glucosidase inhibitor	-	-	-				
Insulin	0.60	0.19–1.90	0.38				

BMI: body mass index; BMFR: body muscle to fat ratio; BUN: B-type natriuretic peptide; eGFR: estimated glomerular filtration rate; HDL: high-density lipoprotein; LDL: low-density lipoprotein; BP: blood pressure; CVD: cardiovascular disease; ARB: angiotensin II receptor blocker; CCB: calcium channel blocker; SGLT2: sodium glucose co-transporter 2; GLP-1: glucagon-like peptide-1; DPP-4: dipeptidyl peptidase-4. Hosmer–Lemeshow goodness-of-fit χ^2 4.577, P=0.711.