1 Title

- 2 CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs
- 3

4 **Running Title**

- 5 Gene correction in hemophilia B-iPSCs
- 6

7 Authors

- 8 Satoshi Morishige,* Shinichi Mizuno,*† Hidetoshi Ozawa,* Takayuki Nakamura,*
- 9 Ahmad Mazahery,‡ Kei Nomura,* Ritsuko Seki,* Fumihiko Mouri,* Koichi Osaki,*
- 10 Kenichi Yamamura,[‡] Takashi Okamura,^{*}§ and Koji Nagafuji^{*}

11 Affiliations

- 12 *Division of Hematology and Oncology, Department of Medicine, Kurume University
- 13 School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
- 14 †Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi,
- 15 Higashi-Ku, Fukuoka 812-8582, Japan
- 16 ‡Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo,

2	§Center for Hematology and Oncology, St. Mary's Hospital, 422 Tsubuku-Honmachi,
3	Kurume 830-8543, Japan
4	
5	
6	Corresponding author:
7	Koji Nagafuji, M.D., Ph.D.
8	Division of Hematology and Oncology, Department of Medicine, Kurume University
9	School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
10	E-mail: knagafuji@med.kurume-u.ac.jp
11	Tel: +81-942-31-7852
12	Fax: + 81-942-31-7854
13	
14	
15	Word count 3,927 (Excluding the abstract and reference list)
16	

Chuo-ku, Kumamoto 860-0811, Japan

1 Abstract

2	Introduction: The clustered regulatory interspaced short palindromic repeats
3	(CRISPR)/CRISPR-associated (Cas) system is an efficient genome editing tool that
4	holds potential for gene therapy. Here, we report an application of this system for gene
5	repair in hemophilia B (HB) using induced pluripotent stem cells (iPSCs).
6	Material and Methods: We prepared targeting plasmids with homology arms
7	containing corrected sequences to repair an in-frame deletion in exon 2 of the factor IX
8	(F9) gene, and transfected patient-derived iPSCs with the Cas9 nuclease and a guide
9	RNA expression vector. To validate the expression of corrected F9, we attempted to
10	induce the differentiation of iPSCs towards hepatocyte-like cells (HLCs) in vitro.
11	Results: We successfully repaired a disease-causing mutation in HB in patient-derived
12	iPSCs. The transcription product of corrected F9 was confirmed in HLCs differentiated
13	from gene-corrected iPSCs.
14	Conclusion: Although further research should be undertaken to obtain completely
15	functional hepatocytes with secretion of the coagulation factor IX, our study provides a
16	proof-of-principle for HB gene therapy using the CRISPR/Cas9 system.

- 1 Keywords: Clustered regularly interspaced short palindromic repeats, CRISPR-
- 2 associated proteins, gene editing, hemophilia B, induced pluripotent stem cells
- 3

1 Introduction

2	Hemophilia B (HB) is an inherited, X-linked recessive bleeding disorder, with
3	an incidence of 1 in 30,000 male births. HB occurs due to a deficiency in or absence of
4	the functional coagulation factor IX (FIX), caused by mutations in the factor IX ($F9$)
5	gene located on chromosome Xq27.1. About 80% of severe HB is caused by missense,
6	nonsense, or frameshift mutations in F9 [1].
7	HB is well suited for gene therapy, and viral vectors such as adeno-associated
8	viral (AAV) vector have been reported by several groups [2, 3]. However, there have
9	been some potential limitations in its use for replacing current therapies. In particular,
10	adverse events such as the host humoral and cellular immune response against the viral
11	vector remain major concerns.
12	To overcome the limitations of conventional strategies based on exogenous
13	gene transfer using viral vectors, genome editing technologies have been developed,
14	enabling the precise modification of genome sequences in many organisms, including
15	mammals. Recently, the clustered regulatory interspaced short palindromic repeats
16	(CRISPR)/CRISPR-associated (Cas) system has emerged as a new genome editing

1	technology [4-6]. The CRISPR/Cas9 system has been shown to efficiently mediate
2	genome editing in a broad range of cell types, including human induced pluripotent
3	stem cells (iPSCs). Patient-derived iPSCs may represent an ideal autologous cell source,
4	avoiding the risk of immune rejection. But, iPSCs established from patients with
5	monogenic diseases, including hemophilia, would still carry disease-causing mutations.
6	Therefore, the precise correction of genes in patient-derived iPSCs using genome
7	editing tools holds great promise for stem cell-based gene therapies [7, 8].
8	Recently, there have been several reports of CRISPR/Cas9-based genome editing in HB
9	patients. Ramaswamy et al. reported CRISPR/Cas9-based genomic correction of HB
10	patient-derived iPSCs, in which universal knock-in of F9 cDNA into exon 1 of the
11	resident F9 gene and a point correction of disease causing mutation were performed [9].
12	Lyu et al. demonstrated that human full-length F9 cDNA was inserted into the AAVS1
13	locus using the CRISPR/Cas9 system [10].
14	In this study, we generated iPSCs from a patient with HB carrying an in-frame
15	deletion in exon 2 of F9, and achieved a successful site-specific gene correction through
16	homology-dependent repair (HDR) using the CRISPR/Cas9 system.
. –	

1 Materials and Methods

Cell culture

3	All cells were maintained at 37°C and 5% CO ₂ in a humidified incubator. Human iPSC
4	line 201B7 (Riken BioResource Center, Tsukuba, Japan) and patient-derived iPSCs
5	were maintained on cell culture plates coated with iMatrix-511 (0.5 μ g/cm ² ; Nippi, Inc.,
6	Tokyo, Japan) in StemFit medium (Ajinomoto Co., Inc., Tokyo, Japan), as described
7	previously [11]. Passaging was performed via dissociation into single cells using
8	Accutase (Innovative Cell Technologies, Inc., San Diego, CA, USA), which enabled
9	rapid cell detachment, a single-cell suspension, and high viability in sensitive cell types
10	such as iPSCs. For prevention of dissociation-induced apoptosis of iPSCs, Y-27632
11	Rho-associated kinase (ROCK) inhibitor (Wako Pure Chemical, Osaka, Japan) was
12	added to the medium at 10 μ M only on the same day, after passaging.
13	Generating iPSCs from peripheral blood mononuclear cells
14	Informed consent was obtained from patients in accordance with the Helsinki
15	Declaration, and the study was approved by the Ethics Committee of the Kurume
16	University School of Medicine.

1	Peripheral blood mononuclear cells (PBMCs; 1×10^6) were cultured in StemPro-34
2	SFM complete medium (Invitrogen Corp., Carlsbad, CA, USA) supplemented with 2
3	mM l-alanyl-l-glutamine (Wako Pure Chemical), 100 ng/mL stem cell factor (SCF), 100
4	ng/mL FMS-like tyrosine kinase 3 (FLT3)-ligand, 20 ng/mL thrombopoietin (TPO), and
5	10 ng/mL interleukin 6 (IL-6) (Invitrogen). After 4 days, the reprogramming of PBMCs
6	into iPSCs was induced using the CytoTune-iPS 2.0 Sendai Reprogramming kit
7	(DNAVEC Corp., Ibaraki, Japan) in accordance with the manufacturer's protocol. After
8	14-21 days, colonies with iPSC morphology were picked and transferred to a novel,
9	efficient feeder-free culture system, in which there is no need for the feeder cell
10	preparation, which requires significant time, and iPSCs can be stably passaged for long
11	periods by dissociating the cells into single cells under xeno-free medium, StemFit
12	AK02N (Ajinomoto, Tokyo, Japan).
13	Isolation of genomic DNA and PCR
14	Genomic DNA was extracted from the cells using NucleoSpin Tissue (Macherey-
15	Nagel, Düren, Germany). On PCR screening of successful knock-in clones, genomic
16	DNA was isolated using SDS/Proteinase K. Unless otherwise specified, PCR was

1	performed using the KOD-Plus-Neo polymerase (Toyobo Co., Ltd., Osaka, Japan). PCR
2	programs and primer sets used in each experiment are described in Table SI, SII.
3	Wizard SV Gel and PCR Clean-Up system (Promega, Madison, WI, USA) was used for
4	purification of PCR products from gel.
5	Vector construction
6	The human codon-optimized Streptococcus pyogenes Cas9 (SpCas9) gene was cloned
7	from hCas9 vector (a gift from George Church, Addgene plasmid #41815) (Mali et al,
8	2013) and inserted into the SpCas9 expression vector. Target guide sequences, with 3'-
9	ends followed by the NGG protospacer-adjacent motif sequence for SpCas9
10	recognition, were selected from intron 1 of $F9$. The first base of the guide was changed
11	to guanine for optimal expression from the human U6 promoter. Synthetic
12	oligonucleotides corresponding to 20-nucleotide guide sequences (Table SIII) were
13	ligated into the single-guide RNA (sgRNA) expression vector [6]. The targeting vector,
14	with homology arms (1.0 kbp in length) containing the corrected sequence, was
15	constructed. The monomeric Kusabira-Orange (mKO) fused to a 2A self-cleaving
16	peptide, followed by the puromycin-N-acetyltransferase cassette, was used as the

1	positive selection marker. This was flanked by mutated lox sites (lox66 and lox71), for
2	selectable cassette excision by Cre-recombinase. The thymidine kinase (tk) gene was
3	used as a negative selection marker.
4	CRISPR/Cas9-mediated genome editing in HT-1080 cells and evaluation of
5	genome editing efficiency
6	HT-1080 cells were transfected with 0.3 μg Cas9 vector and 0.3 μg individual sgRNA
7	vectors, using Lipofectamine 3000 (Invitrogen). Genome editing efficiency was
8	evaluated using Surveyor Mutation Detection Kit (IDT, Coralville, IA, USA). The
9	genomic region containing the CRISPR target site was amplified by PCR, subsequently
10	assayed in accordance with the manufacturer's instructions.
11	CRISPR/Cas9-mediated HDR in iPSCs
12	Nucleofection was performed using the 4D-Nucleofector X unit and P3 Primary Cell
13	4D-Nucleofector X kit (Lonza, Basel, Switzerland). iPSCs were pretreated with 10 μ M
14	Y-27632 for 2 h prior to nucleofection. After single-cell dissociation, 2×10^5 iPSCs
15	were resuspended in 20 μ L of P3 Primary Cell Solution (Lonza), supplemented with 0.8
16	μ g of SpCas9, 0.8 μ g of sgRNA, or 0.8 μ g of the targeting vector. Cells were

1	immediately nucleofected using program CA137 (Lonza), and seeded onto iMatrix-511-
2	coated (0.5 μ g/cm ²) 96-well culture plates in StemFit medium supplemented with 10
3	μ M Y-27632. From day 3 after nucleofection, 0.5 μ g/mL puromycin (Sigma Aldrich, St
4	Louis, MO, USA) and 2 μ M ganciclovir (Tokyo Chemical Industry, Tokyo, Japan) were
5	added to the medium daily for 7 days. For drug-resistant clones, the targeted knock-in
6	events were further checked by PCR screening.
7	Southern blot analysis
8	Genomic DNA was digested with EcoRI-HF (New England Biolabs, Beverly, MA,
9	USA). Digested genomic DNA (10 μ g) was electrophoresed in 1.0% agarose gel and
10	transferred to a Hybond N+ nylon membrane (Amersham Biosciences, Little Chalfont,
11	UK). Southern hybridization was performed with AlkPhos Direct Labelling Reagents
12	(Amersham Bioscience) in accordance with the manufacturer's instructions. The
13	hybridized probe was detected with the CDP-Star Detection Reagent (Amersham
14	Biosciences), followed by analysis using the LAS-4000 mini luminescent image
15	analyzer (Fuji Photo Film Co., Ltd., Tokyo, Japan).
16	Cre/loxP-mediated excision of the selection cassette

1	To excise the loxP-flanked selection cassette, 1 μ g of LV-Cre plasmid DNA expressing
2	Cre recombinase (Addgene plasmid #12106) was nucleofected into targeted iPSCs. The
3	mKO-negative iPSC clones were screened by PCR for a successful Cre/loxP-mediated
4	excision, using the same primer sets as for the Surveyor assay.
5	In vitro hepatocyte-like cells differentiation
6	iPSCs were differentiated into hepatocyte-like cells (HLCs) using the Cellartis DE
7	differentiation kit (Takara Bio Europe AB, Gothenburg, Sweden). To promote
8	endoderm induction, FOXA2 and HNF1A were transduced using a lentiviral system, at
9	the phase of definitive endoderm (DE) induction. At the hepatic
10	specification/maturation phase, C/EBPa, ATF5, and PROX1 were sequentially
11	overexpressed with the same system. Vitamin K1 (50 ng/mL; Wako Pure Chemical)
12	dissolved in DMSO (Sigma Aldrich) was added to hepatocyte maintenance medium.
13	The final concentration of DMSO in culture medium was 0.2% (v/v).
14	Quantitative real-time PCR analysis for hepatocyte-specific markers and
15	F9 mRNA

16 Quantitative real-time PCR (qPCR) assay was performed on a StepOnePlus real-time

1	PCR system (Applied Biosystems, Carlsbad, CA, USA). To analyze the relative
2	expression of liver-specific genes, a SYBR green-based qPCR was carried out in a
3	reaction mixture containing 500 nM each of the forward and reverse primers (Table
4	SIV), cDNA corresponding to 2 ng of total RNA, and THUNDERBIRD SYBR qPCR
5	mix (Toyobo), a final volume of 20 μ L. Relative expression levels were calculated
6	using the $\Delta\Delta$ Ct quantification method. The expression level of each gene was
7	normalized to that of $GAPDH$ as an internal standard. To determine the F9 transcript
8	copy number, the probe-based qPCR approach was applied. The qPCR reaction mix
9	contained 2× PrimeTime Gene Expression Master Mix (IDT), cDNA corresponding to
10	20 ng of total RNA, 900 nM of each primer, 200 nM probe, and nuclease-free water to a
11	final volume of 20 μ L. The experiment was performed in triplicate. For the absolute
12	quantification of F9 mRNA, a standard curve was generated based on a serial dilution
13	of its PCR products, containing a known number of molecules. By using the standard
14	curve, the copy number of $F9$ cDNA was measured. For normalization, we used
15	GAPDH as an internal standard.

16 Enzyme-linked immunosorbent assay (ELISA)

1	FIX antigen levels in culture medium and cell lysate were measured using an AssayMax
2	Human Factor IX ELISA kit (AssayPro, St. Charles, MO, USA). The minimum
3	detectable dose of factor IX was 0.63 ng/mL. Hepatocyte maintenance medium
4	collected from day 25 to day 31 after induction of HLCs was concentrated 100-fold
5	using a 30,000 MWCO concentrator (Vivaspin Turbo 15, Sartorius, UK). Total cell
6	lysates were prepared using CelLytic M (Sigma Aldrich) containing protease inhibitor
7	cocktail (Sigma Aldrich).
8	

Results

2	Generation and characterization of patient-derived iPSCs
3	The patient was a 63-year-old man with severe HB caused by an in-frame deletion
4	(227/229delAAG) in exon 2 of F9. His FIX activity was less than 1% (normal range:
5	70–130%) and antigen levels measured 2.3 $\mu g/mL$ (normal average: 5.0 $\mu g/mL$). Three
6	weeks after transduction from his PBMCs, iPSC colonies with typical human
7	embryonic stem cell (ESC)-like morphology and alkaline phosphatase expression
8	emerged (Fig S1A and S1B). These patient-derived iPSC clones expressed
9	pluripotent marker genes such as POU5F1, SOX2, MYC, KLF4, NANOG, GDF3, REX1,
10	and DMNT3, as verified by end-point RT-PCR (Fig S1C). In addition, genomic DNA
11	analysis confirmed that these iPSC clones presented the disease-specific genotype of
12	their parental somatic cells (Fig S1D). For targeted gene repair of patient-derived
13	iPSCs, we selected the most highly proliferative iPSC clone that formed flat colonies
14	with sharp edges and possessed high plating efficiency among these iPSC clones.
15	CRISPR/Cas9-mediated gene editing at specific gene loci
16	We constructed the sgRNA for inducing double-strand breaks (DSBs) near the mutation

1	site to promote gene repair via HDR. A total of four guide sequences were selected in
2	the intron 1 region of $F9$. To test whether these sgRNAs can achieve targeted cleavage
3	of mammalian chromosomes, each sgRNA expression vector was co-transfected into
4	HT-1080 cells along with a vector encoding a codon-optimized SpCas9 protein. Using
5	the Surveyor nuclease assay, we evaluated the ability of each Cas9-sgRNA complex to
6	generate indels in HT-1080 cells through the induction of DSB and subsequent non-
7	homologous end joining (NHEJ). The percentage of indel frequencies induced by
8	sgRNAs1, 2, 3, and 4 were 3.8%, 7.5%, 8.5%, and 8.7%, respectively. To perform
9	CRISPR/Cas9-mediated HDR in patient-derived iPSCs, we selected the most efficient
10	sgRNA (sgRNA4), containing a targeting sequence located 292 bp upstream of the
11	mutation site (Fig 1).
12	Targeted gene correction in iPSCs derived from a patient with HB
13	To correct the in-frame deletion in exon 2 of F9, we prepared a targeting construct with
14	homology arms containing the corrected sequence. The homology arms were designed
15	to flank the SpCas9 cleavage site (Fig 1). Next, 2×10^5 iPSC cells at passage 20 were
16	co-transfected with SpCas9, the sgRNA, and the targeting vector by nucleofection.

1	Eight undifferentiated puromycin-resistant ganciclovir-insensitive iPSC colonies were
2	manually selected, and genomic DNA isolated from these clones was used for screening
3	of targeted integration events. We identified three successful knock-in clones by use of
4	primer sets located outside the homology arm in combination with primers specific for
5	the targeting construct at the 5' and 3' ends (Fig 2A). For each clone, the corrected
6	sequence was confirmed. We verified the correct integration by Southern blot analysis,
7	indicating that no random integration had occurred (Fig 2B). The sequencing results
8	showed that the in-frame deletion in exon 2 was corrected in all three clones (Fig 2C).
9	To assess the possibility of CRISPR/Cas9-mediated mutagenesis at off-target sites, we
10	analyzed a total of ten potential off-target sites for sgRNA4 (Table SV). The potential
11	off-target sites were predicted using CRISPR Design (http://crispr.mit.edu) and were
12	PCR amplified. In comparison to uncorrected-iPS, sequence analysis showed that
13	candidate loci were intact in the corrected clones. To excise the selection cassette
14	flanked by two mutant loxP sites, we next transfected the knock-in clones with the Cre
15	expression plasmid. The iPSC clones post-excision were identified as mKO-negative
16	colonies that retained typical iPSC morphology (Fig 3A). The excision of the transgene

1	in these iPSC clones was confirmed by genomic PCR with primer sets used in the
2	Surveyor assay, and the 724-bp PCR products indicating successful excision were
3	obtained in all three clones (Fig 3B). The recombination of two mutant loxP sites into a
4	double-mutant lox72 site was confirmed by sequencing (Fig 3C).
5	The expression of corrected F9 in HLCs differentiated from gene-corrected
6	iPSC
7	To confirm the expression of corrected $F9$, gene-corrected iPSC clone was
8	differentiated into HLCs (Fig S2A). The resultant cells induced via DE (Fig S2B)
9	exhibited typical HLC morphology (Fig S2C), and most of these cells were positive for
10	ALB, as demonstrated by immunofluorescence staining (Fig S2D). Compared with the
11	levels in undifferentiated patient-derived iPSCs, the mRNA expression levels of liver-
12	specific genes such as AFP, ALB, FOXA2, and HNF4A in iPSC-derived HLCs were
13	approximately 35000-, 5900-, 4.7-, and 9.6-fold higher (Fig S3). We evaluated the
14	expression of F9 by qPCR in HLCs. Although F9 mRNA could not be quantified in
15	undifferentiated iPSC line 201B7, patient-derived uncorrected iPSCs, or corrected
16	iPSCs, equivalent F9 mRNA could be detected in iPSC line 201B7-derived,

1	uncorrected iPSC-derived, and corrected PSC-derived HLCs (Fig 4A). We also
2	analyzed the cDNA sequence of corrected and uncorrected $F9$ to confirm the integrity
3	of transcription. The results showed that the transcription product contained only the
4	corrected sequence, without contamination of the uncorrected sequence (Fig 4B). While
5	exogenous lox72 site remained in intron 1 of gene-corrected F9 genome, mRNA was
б	firmly spliced between exon 1 and exon 2 (Fig 4B). The concentrations of FIX antigen
7	in the culture supernatant of iPSC line 201B7-derived, uncorrected iPSC-derived, and
8	corrected PSC-derived HLCs were below the detectable level (<0.63 ng/mL). The
9	culture supernatant obtained after 2 days of culture with Vitamin K1 was concentrated
10	100-fold, but FIX antigen was not obtained in the concentrate. The FIX antigen was
11	also not detected in the cell lysate of those iPSCs-derived HLCs.
12	

Discussion

2	Promising results on gene therapy using AAV vector for HB have been
3	reported [2, 3]. AAV vector is capable of exogenous gene transfer to non-proliferating
4	cells such as hepatocytes, and long-term target gene expression is feasible. AAV
5	vectors are predominantly maintained episomally; therefore, cell division will dilute
6	the AAV genome, resulting in the loss of therapeutic expression[12]. Thus, in
7	pediatric patients, because of high hepatocyte cellular turnover, therapeutic efficacy
8	may not be durable. AAV vectors are immunogenic, and re-challenges of AAV
9	vectors seem not to be feasible. AAV vectors are considered as nonintegrating
10	vectors, and an unknown but small amount of the cassette integrates into the
11	genomes, with a potential risk of genotoxicity at insertion site [13]. The recent advent
12	of genome editing technologies such as the CRISPR/Cas9 system has enabled the site-
13	specific precise modification of the genome to achieve a therapeutic effect. Unlike AAV
14	vector, the CRISPR/Cas9 system can be applied to proliferating cells such as iPSCs
15	without the loss of genetic modifications along with cell division. The technology has
16	been expected as a new gene therapy method in regenerative medicine for blood

1	disorders, including hemophilia A [14]. An advantage of patient-derived iPSCs is that
2	they are not immunogenic. The iPSCs come from a single patient and are sent back to
3	the same patient after in-vitro genetic engineering and/or differentiation, avoiding the
4	problem of immunologic rejection. In contrast to in-vivo gene editing, this approach
5	allows for the selection and removal of unintended mutagenesis. Furthermore,
6	hepatocytes from gene-edited iPSCs of an HB patient[10] and hepatic progenitor-like
7	cells from gene-edited mouse embryonal stem cells[15] were reported to survive and
8	secret FIX after being transplanted in mice via splenic injection. Thus, gene-edited
9	iPSCs are promising therapeutic options for HB therapy, with potentials of greater
10	durability and better safety profile compared with gene therapy using AAV vector for
11	HB.
12	In our study, we assessed the applicability of this system to gene therapy in
13	HB-derived iPSCs carrying an in-frame deletion in exon 2 of F9 and performed a
14	successful gene correction. Our findings support that the CRISPR/Cas9 system-based
15	gene correction can be applied not only to point mutation, but also to an in-frame
16	deletion mutation in F9.

1	In construction of the CRISPR/Cas9 system for gene correction of exon 2 of
2	F9, we selected four candidate target sequences in intron 1 to avoid disruption of exon
3	sequence. We designed each sgRNA and achieved efficient genome editing in human
4	somatic cells at all target sites. We succeeded in performing a gene correction in iPSCs
5	derived from a patient with HB through the precise knock-in of the targeting vector. The
6	efficiency of successful integration events was consistent with previous reports [16, 17],
7	in which targeted integration events reached 10-20 events per million in human iPSCs.
8	We confirmed the expression of corrected F9 mRNA in HLCs differentiated
9	from gene-corrected iPSC clone. In our differentiation protocol for HLCs using
10	Cellartis DE differentiation kit, several transcriptional factors were transduced to
11	enhance HLC differentiation [18, 19]. These approaches are based on the hypothesis
12	that the induction of key transcription factors to mimic the <i>in vivo</i> hepatic development
13	is required for full HLC specification. In accordance with previous reports, the
14	expression of characteristic hepatocyte marker genes, such as ALB, increased in iPSC-
15	derived HLCs. However, we could not detect the FIX antigen in the culture supernatants
16	of iPSC-derived HLCs owing to low expression level of F9 mRNA.

1	Recently, Ramaswamy et al. reported successful CRISPR/Cas9-based gene correction
2	of disease-causing point mutation in HB patient-derived iPSCs genome, demonstrating
3	FIX antigens in iPSC-derived HLCs and the culture supernatant, with incomplete
4	differentiation of iPSC to hepatocytes. They used an in vitro hepatic differentiation
5	protocol that closely recapitulates key developmental events during hepatogenesis [9].
6	Thus, our differentiation protocol for HLCs using Cellartis DE differentiation kit with
7	transduced several transcriptional factors needs more improvement to obtain functional
8	FIX.
9	Apart from the difference in culture conditions, several factors should be
9 10	Apart from the difference in culture conditions, several factors should be considered as reasons for the failure to detect the FIX antigen. First, the propensity of
10	considered as reasons for the failure to detect the FIX antigen. First, the propensity of
10 11	considered as reasons for the failure to detect the FIX antigen. First, the propensity of iPSCs for hepatic differentiation has been reported to depend on donor differences.
10 11 12	considered as reasons for the failure to detect the FIX antigen. First, the propensity of iPSCs for hepatic differentiation has been reported to depend on donor differences. Kajiwara et al. reported that those variations in hepatic differentiation from iPSCs were
10 11 12 13	considered as reasons for the failure to detect the FIX antigen. First, the propensity of iPSCs for hepatic differentiation has been reported to depend on donor differences. Kajiwara et al. reported that those variations in hepatic differentiation from iPSCs were largely attributable to donor differences, rather than to the types of the original cells

1	to recapitulate what naturally occurs during early organ development. Takebe et al. also
2	described the importance of cellular interactions during organogenesis and that of
3	hemodynamic stimulation during maturation [21]. Our experiment tried to induce
4	hepatic differentiation by forced expression of key liver-enriched transcription factors
5	alone. Incubation of iPSCs with endothelial and mesenchymal stem cells seems to be
6	worth investigation. Third, the epigenetic state may affect $F9$ expression. In a study
7	investigating hepatic differentiation in mouse ESCs, Cao et al. demonstrated that
8	treatment with sodium butyrate (SB), bone morphogenetic proteins (BMPs), and FGFs
9	in hepatic progenitor cells is critical for increasing the mRNA and protein levels of
10	coagulation factors VIII and IX [22]. They speculated that treatment with SB, a histone
11	deacetylase inhibitor, triggered epigenetic changes in ESCs, increasing cellular response
12	to the bFGF- and BMP4-mediated induction of endoderm- and hepatocyte-specific gene
13	expression. Epigenetic modification was not investigated in our experiment, and should
14	be investigated in the future to achieve the induction of FIX secretion from iPSC-
15	derived HLCs.

In summary, we demonstrated that the CRISPR/Cas9 system can be used to

1	repair an in-frame deletion mutation in $F9$, and succeeded in the hepatic differentiation
2	of iPSCs. We could confirm the correctly spliced transcriptional product from corrected
3	F9; however, further research should be undertaken to obtain completely functional
4	hepatocytes from gene-corrected iPSCs as a potential cellular source for the treatment
5	of HB. Despite several hurdles, our study provides a proof-of-principle for the gene
6	therapy of HB using the CRISPR/Cas9 system.
7	
8	Author contributions
9	All authors have fulfilled the conditions required for authorship. S. Morishige
10	contributed to all experiments in the collection and interpretation of the data, and wrote
11	the manuscript. S. Mizuno contributed to the study concept and the study design and
12	supervised the research. H. Ozawa performed experiments and analyzed and interpreted
13	the data. T. Nakamura performed experiments and analyzed data. T. Okamura, A.
14	Mazahery, and K. Yamamura supervised experiments. K. Nagafuji critically revised the
15	manuscript. All authors discussed the results and approved the final version of the
16	manuscript.

1 Acknowledgments

2 We are grateful to Hironori Koga, M.D., Ph.D. of Division of Gastroenterolog	2	We are grateful to	o Hironori Koga,	M.D., Ph.D.	of Division of	of Gastroenterolog
--	---	--------------------	------------------	-------------	----------------	--------------------

3 Department of Medicine, Kurume University School of Medicine, for technical support

- 4 with the Southern blotting experiments.
- 5

6 Disclosure of Conflict of Interests

- 7 The authors state that they have no conflict of interest.
- 8

9 Supporting Information

10 Additional Supporting Information may be found in the online version of this article:

11 Supplemental materials and methods

- 12 Figure S1. Generation of iPSCs from peripheral blood mononuclear cells of a
- 13 hemophilia B patient.
- 14 **Figure S2.** Differentiation of patient-derived iPSCs into HLCs.
- 15 Figure S3. Relative quantification of hepatocyte-related genes in iPSC-derived HLCs
- 16 using real time-PCR.

- **Table SI.** PCR programs
- **Table SII.** Primer sets for PCR analysis.
- **Table SIII.** Oligonucleotides for generating the sgRNA expression vector.
- **Table SIV.** Primer sets and probe for qPCR analysis.
- **Table SV.** Off-target candidates for sgRNA4.

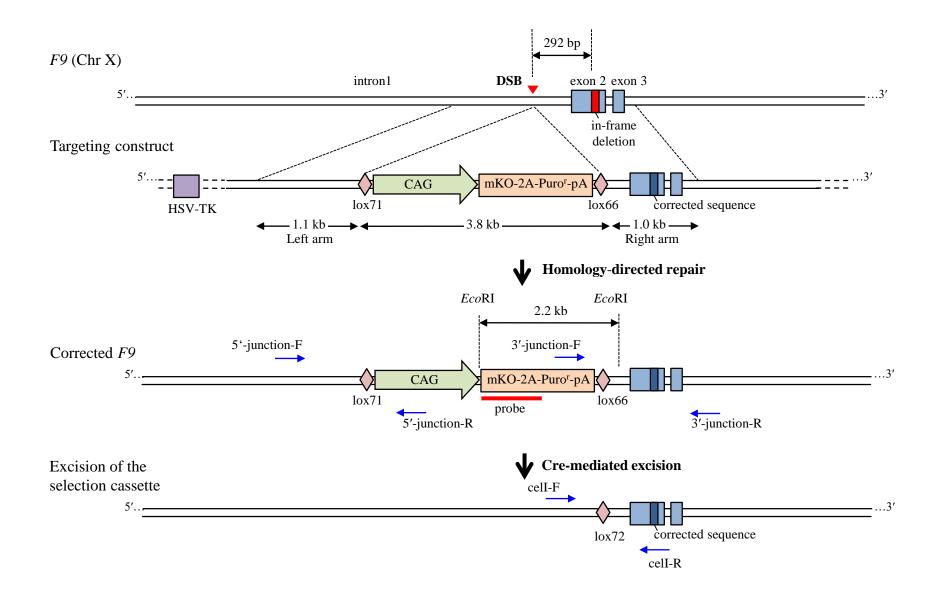
1 **References**

2 1. Li T, Miller CH, Payne AB, Craig Hooper W. The CDC Hemophilia B mutation 3 project mutation list: a new online resource. Mol Genet Genomic Med. 4 2013;1:238-45. 5 2. George LA, Sullivan SK, Giermasz A, Rasko JEJ, Samelson-Jones BJ, Ducore J, 6 et al. Hemophilia B Gene Therapy with a High-Specific-Activity Factor IX 7 Variant. N Engl J Med. 2017;377:2215-27. 8 3. Nathwani AC, Reiss UM, Tuddenham EG, Rosales C, Chowdary P, McIntosh J, 9 et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N 10 Engl J Med. 2014;371:1994-2004. 11 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A 4. 12 programmable dual-RNA-guided DNA endonuclease in adaptive bacterial 13 immunity. Science. 2012;337:816-21. 14 5. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome 15 engineering using CRISPR/Cas systems. Science. 2013;339:819-23. 16 Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided 6. 17 human genome engineering via Cas9. Science. 2013;339:823-6. 18 7. Zou J, Mali P, Huang X, Dowey SN, Cheng L. Site-specific gene correction of a 19 point mutation in human iPS cells derived from an adult patient with sickle cell 20 disease. Blood. 2011;118:4599-608. 21 8. Park CY, Kim J, Kweon J, Son JS, Lee JS, Yoo JE, et al. Targeted inversion and 22 reversion of the blood coagulation factor 8 gene in human iPS cells using 23 TALENS. Proc Natl Acad Sci U S A. 2014;111:9253-8. 24 9. Ramaswamy S, Tonnu N, Menon T, Lewis BM, Green KT, Wampler D, et al. 25 Autologous and Heterologous Cell Therapy for Hemophilia B toward Functional 26 Restoration of Factor IX. Cell Rep. 2018;23:1565-80. 27 10. Lyu C, Shen J, Wang R, Gu H, Zhang J, Xue F, et al. Targeted genome engineering in human induced pluripotent stem cells from patients with 28 29 hemophilia B using the CRISPR-Cas9 system. Stem Cell Res Ther. 2018;9:92. 30 11. Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, et al. A 31 novel efficient feeder-free culture system for the derivation of human induced 32 pluripotent stem cells. Sci Rep. 2014;4:3594.

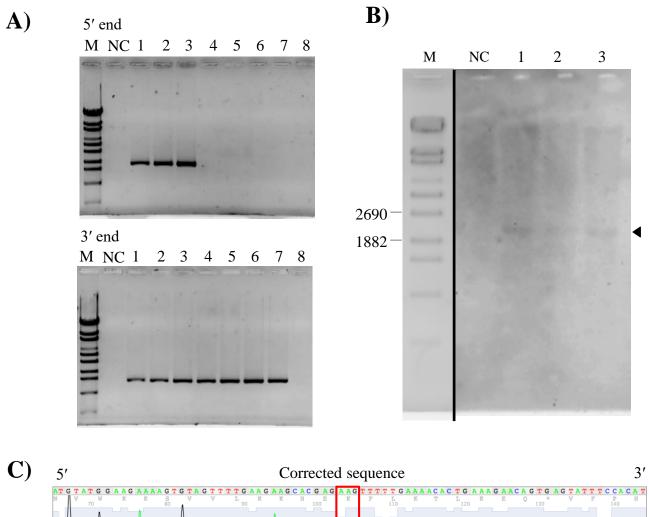
1	12.	Wang L, Wang H, Bell P, McMenamin D, Wilson JM. Hepatic gene transfer in
2		neonatal mice by adeno-associated virus serotype 8 vector. Hum Gene Ther.
3		2012;23:533-9.
4	13.	Pipe SW, Selvaraj SR. Gene editing in hemophilia: a "CRISPR" choice? Blood.
5		2019;133:2733-4.
6	14.	Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, et al. Functional Correction of
7		Large Factor VIII Gene Chromosomal Inversions in Hemophilia A Patient-
8		Derived iPSCs Using CRISPR-Cas9. Cell Stem Cell. 2015;17:213-20.
9	15.	Wang Y, Zhao J, Duan N, Liu W, Zhang Y, Zhou M, et al. Paired CRISPR/Cas9
10		Nickases Mediate Efficient Site-Specific Integration of F9 into rDNA Locus of
11		Mouse ESCs. Int J Mol Sci. 2018;19.
12	16.	Merkle FT, Neuhausser WM, Santos D, Valen E, Gagnon JA, Maas K, et al.
13		Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem
14		cells lacking undesired mutations at the targeted locus. Cell Rep. 2015;11:875-83.
15	17.	Smith C, Abalde-Atristain L, He C, Brodsky BR, Braunstein EM, Chaudhari P, et
16		al. Efficient and allele-specific genome editing of disease loci in human iPSCs.
17		Mol Ther. 2015;23:570-7.
18	18.	Nakamori D, Takayama K, Nagamoto Y, Mitani S, Sakurai F, Tachibana M, et al.
19		Hepatic maturation of human iPS cell-derived hepatocyte-like cells by ATF5,
20		c/EBPalpha, and PROX1 transduction. Biochem Biophys Res Commun.
21		2016;469:424-9.
22	19.	Takayama K, Inamura M, Kawabata K, Sugawara M, Kikuchi K, Higuchi M, et
23		al. Generation of metabolically functioning hepatocytes from human pluripotent
24		stem cells by FOXA2 and HNF1alpha transduction. J Hepatol. 2012;57:628-36.
25	20.	Kajiwara M, Aoi T, Okita K, Takahashi R, Inoue H, Takayama N, et al. Donor-
26		dependent variations in hepatic differentiation from human-induced pluripotent
27		stem cells. Proc Natl Acad Sci U S A. 2012;109:12538-43.
28	21.	Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al.
29		Vascularized and functional human liver from an iPSC-derived organ bud
30		transplant. Nature. 2013;499:481-4.
31	22.	Cao J, Shang CZ, Lu LH, Qiu DC, Ren M, Chen YJ, et al. Differentiation of
32		embryonic stem cells into hepatocytes that coexpress coagulation factors VIII and
33		IX. Acta Pharmacol Sin. 2010;31:1478-86.

1 Figure legends

2 Fig 1. Schematic overview of the gene-targeting strategy for correcting the mutant 3 allele. 4 After the CRISPR/Cas9-mediated knock-in of the targeting construct into the genomic locus, the successful knock-in clones were identified by PCR screening and Southern 5 6 blot analysis. The CAG-mKO-2A-puro cassette flanked by two mutant loxP sites (lox66 7 and lox71) was removed by Cre/lox site-specific recombination, resulting in the replacement of the whole cassette by the lox72 sequence. Blue arrows denote the PCR 8 9 primer sets for detecting the successful knock-in events, and the red bar indicates the 10 specific DNA probe used for Southern blot analysis. DSB, double-strand break; HSV-11 TK, herpes simplex virus thymidine kinase gene. 12 Fig 2. Gene correction of the F9 gene in patient-derived iPSCs. 13 (A) Locus analysis for detecting the precise knock-in event at the corrected site. 14 To evaluate site-specific integration by HDR, genomic DNA extracted from eight 15 puromycin-resistant clones were PCR amplified using primer sets flanking the 16 homology arms. The expected sizes of the PCR products were 1697 (top) and 1345 bp


1	(bottom). NC indicates the negative control, using genomic DNA extracted from		
2	patient-derived iPSCs as the PCR template. StyI-digested lambda DNA was used as a		
3	molecular marker (lane M).		
4	(B) Southern blot analysis of knock-in clones.		
5	EcoRI-HF-digested genomic DNA derived from the PCR-positive clones was		
6	electrophoresed in 1% agarose gel and transferred to a Hybond N+ nylon membrane,		
7	followed by hybridization with the selection cassette-specific DNA probe. The size of		
8	expected DNA fragments was 2209 bp (black arrowheads). StyI-digested lambda DNA		
9	was used as a molecular marker (lane M). The black line indicates the boundary		
10	between the agarose gel and a chemiluminogram. DNA derived from uncorrected iPSC		
11	was used as the negative control (NC). Brightness and contrast were adjusted.		
12	(C) Sequence analysis of PCR products.		
13	PCR products amplified using primer sets flanking the homology arms were subjected		
14	to sequencing analysis to confirm the correction of the disease-causing mutation.		
15	Corrected sequence is marked with red box.		
16			

1	Fig 3.	Excision	of the	selectable	marker gene.
---	--------	----------	--------	------------	--------------


2	(A) <i>Cre-mediated excision of the loxP-flanked selection marker from a successfully</i>
3	targeted iPSC clone.
4	Phase-contrast and fluorescence (mKO) images of an iPSC colony before (a, c) and
5	after (b, d) Cre-mediated excision of the CAG-mKO-2A-puro cassette (200 \times
6	magnification).
7	(B) Successful removal of the selection cassette.
8	The successful Cre-mediated excision was verified by PCR analysis using primer sets
9	used in the Surveyor assay. The expected size of the PCR products was 724 bp. A 100-
10	bp DNA ladder was used as a molecular marker (lane M).
11	(C) <i>Recombination of two mutant loxP sites.</i>
12	The replacement of the whole cassette by the lox72 sequence was confirmed by
13	sequencing of the 724-bp PCR products. The lox72 sequence is marked with red box.
14	
15	

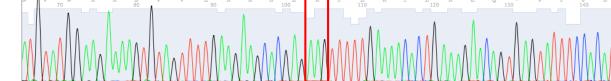
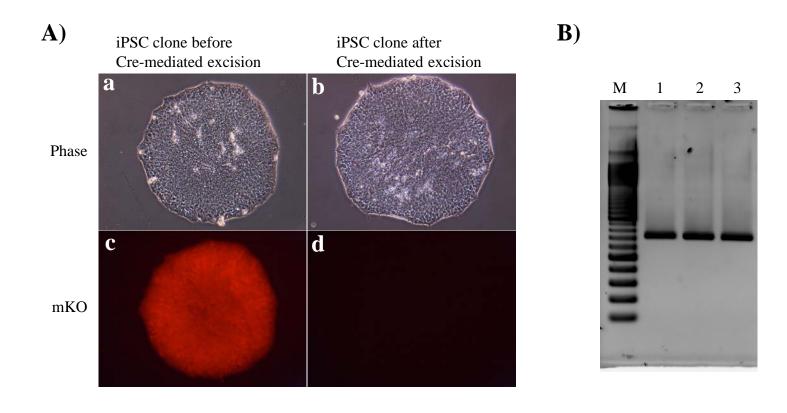
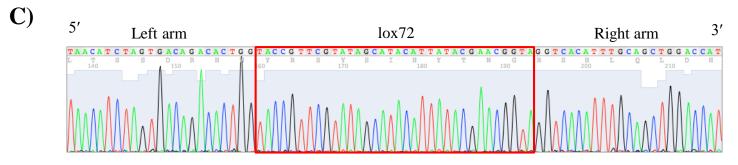
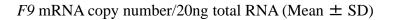
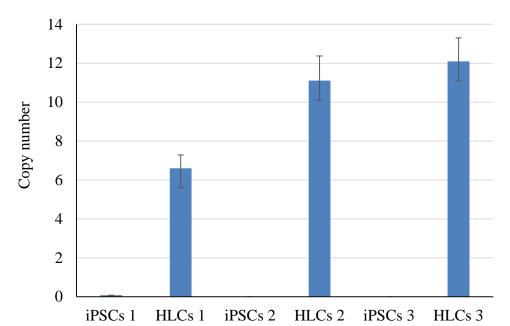

1	Fig 4. Quantitative real-time PCR for F9 mRNA and cDNA sequence analysis.
2	A) Absolute quantification of F9 mRNA in iPSC-derived HLCs using real time-
3	PCR.
4	The copy number of F9 mRNA was quantified using a standard curve. Data represent
5	the averages of three independent experiments \pm SD. GAPDH was used as internal
6	control. F9 mRNA could not be quantified in undifferentiated iPSC line 201B7, patient-
7	derived uncorrected iPSCs or corrected iPSCs, equivalent F9 mRNA could be detected
8	in iPSC line 201B7-derived, uncorrected iPSC-derived, and corrected PSC-derived
9	HLCs.
10	
11	B) Sequence analysis of cDNA encoding F9.
12	PCR-amplified F9 cDNA was subjected to sequencing analysis to confirm the
13	correction of the transcription product. Deletion site before gene correction is indicated
14	by red arrowhead (top). Corrected sequence is marked with red box (middle) and
15	predicted exon junction in corrected clone is depicted by red bar (bottom).

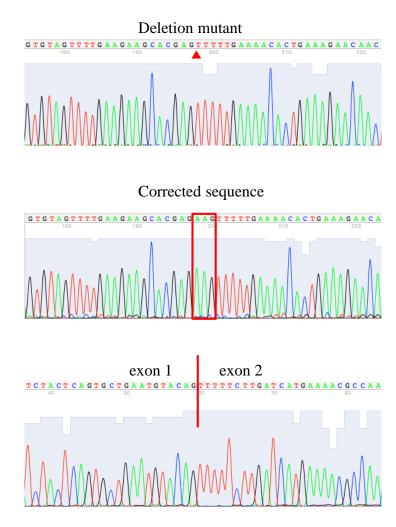
Fig. 1




Fig. 2




Fig. 3



iPSCs 1: 201B7 iPSCs HLCs 1: HLCs-derived from 201B7 iPSCs iPSCs 2: Uncorrected iPSCs HLCs 2: HLCs-derived from uncorrected iPSCs iPSCs 3: Corrected iPSCs HLCs 3: HLCs-derived from corrected iPSCs B)

