1 Perivascular leukocyte cluster: an essential structure for efficient effector T cell

2 activation in the skin

3

- 4 Yohei Natsuaki^{1,12,14}, Gyohei Egawa^{1,14}, Satoshi Nakamizo¹, Sho Hanakawa¹, Sachiko Ono¹,
- 5 Takaharu Okada², Nobuhiro Kusuba¹, Atsushi Otsuka¹, Akihiko Kitoh¹, Tetsuya Honda¹,
- 6 Saeko Nakajima¹, Soken Tsuchiya³, Yukihiko Sugimoto³, Ken J. Ishii^{4,5}, Hiroko Tsutsui⁶,
- Hideo Yagita⁷, Yoichiro Iwakura⁸, Masato Kubo^{9,10}, <u>Lai guan Ng</u>¹¹, Takashi Hashimoto¹²,
- 8 Judilyn Fuentes¹³, Emma Guttman-Yassky¹³, Yoshiki Miyachi¹, and Kenji Kabashima¹

9

- 11 Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
- ² Research Unit for Immunodynamics, RIKEN Research Center for Allergy and Immunology,
- 13 Kanagawa, Japan.
- ³ Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences,
- 15 Kumamoto University, Kumamoto, Japan.
- ⁴ Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, Osaka,
- 17 Japan.
- ⁵ Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka
- 19 University, Osaka, Japan.
- ⁶ Departments of Microbiology, Hyogo College of Medicine, Hyogo, Japan.
- ⁷ Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan.
- ⁸ Center for Experimental Medicine and Systems Biology, The Institute of Medical Science,
- 23 University of Tokyo, Tokyo, Japan.
- ⁹ Laboratory for Cytokine Regulation, RIKEN center for Integrative Medical Science (IMS),
- 25 Kanagawa, Japan.
- 26 ¹⁰ Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo
- 27 University of Science, Chiba, Japan
- 28 ¹¹ Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and
- 29 Research), Biopolis, Singapore
- 30 ¹² Department of Dermatology, Kurume University School of Medicine, Fukuoka, Japan.
- 31 ¹³ Department of Dermatology, Icahn School of Medicine at Mount Sinai School Medical
- 32 Center, New York, NY.
- 33 ¹⁴ These authors contributed equally to this work.

- 35 Correspondence to Kenji Kabashima, MD, PhD
- 36 Department of Dermatology, Kyoto University Graduate School of Medicine
- 37 54 Shogoin-Kawara, Kyoto 606-8507, Japan
- 38 Phone: +81-75-751-3605; Fax: +81-75-761-3002
- 39 E-mail: kaba@kuhp.kyoto-u.ac.jp

It remains largely unclear how antigen-presenting cells encounter effector/memory T cells 41 efficiently in the periphery. Here we used a murine contact hypersensitivity model to analyze 42 antigen presentation in the skin. Upon epicutaneous antigen challenge, dendritic cells (DCs) 43 formed clusters with effector T cells in dermal perivascular areas to promote in situ 44 45 proliferation and activation of effector T cells in antigen- and integrin LFA-1-dependent manners. Intriguingly, DCs were attracted toward perivascular area and DC clustering was 46 abrogated by macrophage-depletion. IL-1α treatment induced CXCL2 production from 47 dermal macrophages, and DC clustering was suppressed by blockade of either IL-1R or 48 CXCR2. These findings suggest that dermal leukocyte cluster is an essential structure for 49 elicitation of the acquired cutaneous immunity. 50

52 Boundary tissues, including the skin, are continually exposed to foreign antigens that must be monitored and characterized for possible elimination. Upon exposure to skin, skin dendritic **5**3 54 cells (DCs), including epidermal Langerhans cells (LCs), capture the antigens and migrate to draining lymph nodes (LNs). In the LNs, antigen presentation to naïve T cells occurs mainly 55 56 in the T cell zone, where naïve T cells accumulate in the vicinity of DCs via CCR7-signaling¹. This structure facilitates the efficient encounter of antigen-bearing DCs with antigen-specific 57 naïve T cells. 58 On the other hand, antigen presentation within the skin is the crucial step in elicitation of 59 acquired skin immune responses. Since the majority of skin-infiltrating T cells are effector 60 memory-phenotype and either naïve T cells or B cells are almost absent in the skin², the 61 antigen-presentation mechanism in the skin should be substantially different from that in LNs. 62 Using a murine contact hypersensitivity (CHS) model, previous studies have revealed that 63 dermal DCs (dDCs), but not epidermal LCs, play a pivotal role in the antigen-carrying and 64 presentation process in LNs³. In the skin, however, it remains unclear which subset of 65 antigen-presenting cells (APCs) presents antigens to peripheral effector/memory T cells, and 66 how skin-infiltrating effector/memory T cells efficiently encounter APCs. On the other hand, 67 dermal macrophage is one of a key modulator in CHS response⁴, but the precise mechanism 68 behind how macrophages are involved in an antigen recognition process in the skin has not 69 yet been clarified. These unsolved puzzles prompted us to focus on the peripheral 70 71 antigen-recognition mechanism by skin-infiltrating effector/memory T cells. 72 When keratinocytes encounter foreign antigens, they immediately produce various pro-inflammatory mediators such as interleukin (IL)-1 and tumor necrosis factor (TNF)-α in 73 an antigen-nonspecific manner^{5, 6}. In particular, the IL-1 family proteins have been 74 considered to be important modulators in CHS responses, because hapten-specific T cell 75 activation was shown to be impaired in IL- $1\alpha/\beta$ -deficient mice but not in TNF- α -deficient 76 mice⁷. The agonistic ligands of the IL-1 receptor (IL-1R) are IL-1 α and 77 IL-1 β . While IL-1 α is stored in keratinocytes and secreted upon exposure to nonspecific 78 stimuli, IL-1ß is produced mainly by epidermal LCs and dermal mast cells in an 79 inflammasome-dependent manner via NALP3 and caspase 1/11 activation. Since these 80 pro-inflammatory mediators are crucial even in the initiation of acquired immune responses, 81 it is of great interest how IL-1 modulates antigen recognition by skin-infiltrating T cells. 82 83 Using a murine CHS model, here we examined how DCs and effector T cells encounter 84 each other efficiently in the skin. We found that dDCs formed clusters upon antigen stimuli,

wherein effector T cells proliferated and activated in an antigen-dependent manner. These 85 DC-T cell clusters were initiated by skin macrophages via IL-1R signaling and were essential 86 for the establishment of cutaneous acquired immune responses. 87 88 89 90 **RESULTS** 91 DC-T cell clusters are formed at antigen-challenged sites To explore immune cell accumulation in the skin, we examined the clinical and histological 92 features of elicitation of human allergic contact dermatitis. Allergic contact dermatitis is the 93 most common eczematous skin diseases, affecting 15-20% of the general population 94 worldwide⁸, and is mediated by T cells. Although antigens may be applied relatively evenly 95 over the surface of skin, clinical manifestations commonly include discretely distributed 96 small vesicles (Fig. 1a), suggesting an uneven occurrence of intense inflammation. 97 Histological examination of allergic contact dermatitis has shown spongiosis, intercellular 98 edema in the epidermis, and co-localization of perivascular infiltrates of CD3⁺ T cells and 99 spotty accumulation of CD11c⁺ DCs in the dermis, especially beneath the vesicles (**Fig. 1b**). 100 101 These findings led us to hypothesize that focal accumulations of T cells and DCs in the 102 dermis may contribute to vesicle formation in early eczema. 103 To characterize the DC-T cell clusters in elicitation reactions, we obtained time-lapse 104 images in a murine model of CHS using two-photon microscopy. T cells were isolated from the draining LNs of 2, 4-dinitrofluorobenzene (DNFB)-sensitized mice, labeled and 105 106 transferred into CD11c-yellow fluorescent protein (YFP) mice. In the steady state, YFP⁺ dDCs distributed diffusely (Fig. 1c), representing nondirected movement, as reported 107 108 previously (Supplementary Fig. 1). After topical challenge with DNFB, YFP⁺ dDCs 109 transiently increased their velocities and formed clusters in the dermis, becoming larger and 110 more evident over 24 h (Fig. 1c circles and Supplementary Movie 1). At the same time, transferred T cells accumulated in the DC clusters and interacted with YFP+ DCs for several 111 hours (Fig. 1d and Supplementary Movie 2). Thus, the accumulation of DCs and T cells in 112 the dermis is provoked in mice during CHS responses. Intriguingly, the intercellular spaces 113 between keratinocytes overlying the DC-T cell clusters in the dermis were enlarged (Fig. 1e), 114 replicating what is seen in human allergic contact dermatitis. We then sought to determine 115 which of the two major DC populations in skin, epidermal LCs or dDCs, were essential for 116 the elicitation of CHS, using bone marrow (BM) chimeric CD11c-diphtheria toxin receptor 117 (DTR) and Langerin-DTR mice (Supplementary Fig. 2). We found that ear swelling and 118

119	inflammatory histological findings were significantly attenuated in the absence of dDCs, but
120	not in the absence of LCs (Fig. 1f and Supplementary Fig. 3). In addition, interferon
121	(IFN)-γ-production by skin-infiltrating T cells was strongly suppressed in dDC-depleted mice
122	(Fig. 1g). These results suggest that dDCs, and not epidermal LCs, are essential for the
123	elicitation of CHS responses.
124	
125	Skin-infiltrating effector T cells proliferate in situ in an antigen-dependent manner
126	To evaluate the impact of DC-T cell clusters in the dermis, we determined whether T cells
127	had acquired the ability to proliferate via DC-T cell accumulation in the dermis. CD4+ or
128	CD8 ⁺ T cells purified from the draining LNs of DNFB-sensitized mice were labeled with
129	CellTrace TM Violet and transferred into naïve mice. Twenty-four hours after DNFB
130	application, we collected the skin to evaluate T cell proliferation by dilution of fluorescent
131	intensity, and we found that the majority of infiltrating T cells were CD44 ⁺ CD62L ⁻ effector
132	memory phenotype (Supplementary Fig. 4) and that among the infiltrating T cells, CD8+T
133	cells proliferated actively, whereas the $CD4^+T$ cells showed low proliferative potency (Fig.
134	2a). This T cell proliferation was antigen-dependent, since 2,4,6-trinitrochlorobenzene
135	(TNCB)-sensitized T cells exhibited low proliferative activities in response to DNFB
136	application (Fig. 2a). In line with this finding, the DC-T cell conjugation time was prolonged
137	in the presence of cognate antigens (Fig. 2b), and the T cells interacting with DCs divided
138	within DC-T cell clusters (Fig. 2c, and Supplementary Movie 3).
139	
140	CD8 ⁺ T cell activation in DC–T cell clusters is LFA-1 dependent
141	A sustained interaction between DCs and naïve T cells, which has been named as
142	immunological synapse, is maintained with cell adhesion molecules ⁹ . Particularly,
143	lymphocyte function-associated antigen-1 (LFA-1), an integrin on T cells bound to
144	intercellular adhesion molecule-1 (ICAM-1) on the APCs, is essential for T cell proliferation
145	and activation in an antigen-recognition process in LNs. To examine whether LFA-1-ICAM-1
146	interaction is required for effector T cell activation in DC-T cell clusters in the skin, an
147	anti-LFA-1 neutralizing antibody, KBA, was intravenously injected 14 h after elicitation.
148	Intriguingly, accumulated T cells were dispersed by KBA treatment (Fig. 3a). The velocity of
149	T cells in the cluster was 0.65 ± 0.29 µm/min at the beginning (14 h after DNFB challenge)
150	and increased up to 3-fold (1.64 \pm 1.54 $\mu m/min$) at 8 h after KBA-treatment, while it was not
151	affected by isotype-matched control IgG treatment (Fig. 3b). At the outside of the cluster, T

152	cells smoothly migrated at the mean velocity of 2.95 \pm 1.19 $\mu\text{m/min},$ which was in consistent
153	with our previous report ¹⁰ . And again, it was not affected by control-IgG treatment (data not
154	shown). KBA treatment also attenuated ear swelling significantly (Fig. 3c), as was IFN- γ
155	production by skin-infiltrating CD8 ⁺ T cells (Fig. 3d and e). These findings suggest that DC–
156	effector T cell conjugations are integrin-dependent, as seen in the DC-naïve T cell
157	interactions in draining LNs.
158	
159	Skin macrophages are required for dDC clustering
160	We next examined the initiation factors of DC-T cell accumulation. Intriguingly, dDC
161	clusters were also formed in response to the initial application of hapten (sensitization phase).
162	But their number was significantly decreased 48 h after sensitization, while DC clusters
163	persisted for 48 h in the elicitation phase (Fig. 4a and Supplementary Fig. 5a). These DC
164	clusters were abrogated 7 days after DNFB application (data not shown). These observations
165	suggest that DC-T cell accumulation is initiated by DC clustering, which then induces the
166	accumulation, proliferation, and activation of T cells, a process that depends on the presence
167	of antigen-specific effector T cells in situ. DC clusters were also induced by solvents such as
168	acetone or adjuvants such as dibutylphthalic acid and Mycobacterium bovis BCG-inoculation
169	(Supplementary Fig. 5b and c). In addition, DC cluster formation was observed not only in
170	the ear but also in other regions such as back skin and footpad (Supplementary Fig. 5d).
171	These results suggest that DC cluster formation is not an ear-specific event, but a
172	fundamental mechanism to elicit skin inflammation.
173	The initial DC clusters were not attenuated in recombination activating gene 2
174	(RAG2)-deficient mice in which T and B cells were absent, in lymphoid tissue inducer
175	cell-deficient aly/aly mice 11, or in mast cell or basophil-depleted conditions using
176	MasTRECK or BasTRECK mice ^{12, 13} (Fig. 4b). In contrast, DC clusters were abrogated in
177	LysM-DTR BM chimeric mice, in which both macrophages and neutrophils were depleted by
178	treatment with diphtheria toxin (DT) (Fig. 4b and c). Since the depletion of neutrophils alone
179	by administration of anti-Ly6G antibody (1A8) did not interfere with DC cluster formation
180	(Fig. 4b), it seems that macrophages, but not neutrophils, play roles during the formation of
181	DC clusters. Of note, DC cluster formation was not attenuated by anti-LFA-1 neutralizing
182	KBA antibody-treatment (Supplementary Fig. 6), suggesting that macrophage-DC
183	interaction was LFA-1 independent. Consistent with the DC cluster formation, the elicitation
184	of the CHS response (Fig. 4d) and IFN-γ production by skin-infiltrating T cells (Fig. 4e)

185	were significantly suppressed in LysM-DTR BM chimeric mice treated with DT.
186	
187	Macrophages are essential for perivascular DCs clustering upon antigen-challenge
188	To examine the kinetics of dermal macrophage and DCs in vivo, we visualized them by
189	two-photon microscopy. In vivo labeling of blood vessels with tetramethylrhodamine
190	isothiocyanate (TRITC)-conjugated dextran revealed that dDCs distributed diffusely in the
191	steady state (Fig. 5a, left). After hapten-application to the ear of previously sensitized mice,
192	dDCs accumulated mainly around post-capillary venules (Fig. 5a, right, and 5b).
193	Interestingly, time-lapse imaging revealed that some of dDCs showed directional migration
194	toward TRITC-positive cells that were labeled red by incorporating extravasated
195	TRITC-dextran (Fig. 5c and Supplementary Movie 4). The majority of TRITC-positive
196	cells were F4/80 ⁺ CD11b ⁺ macrophages (Supplementary Fig. 7). These observations
197	prompted us to examine the role of macrophages in DC accumulation. We used a chemotaxis
198	assay to determine whether macrophages attracted the DCs. As expected, dDCs were
199	efficiently attracted by skin-derived macrophages (Fig. 5d).
200	
201	IL-1 α signaling is essential for DC cluster formation upon antigen challenge
202	We attempted to explore the underlying mechanism of DC cluster formation. Since DC
203	accumulation occurred during the first application of hapten, an antigen-nonspecific
204	mechanism, such as production of pro-inflammatory mediator IL-1, may initiate DC
205	clustering. Intriguingly, DC accumulation in response to hapten was not suppressed in
206	NALP3- or caspase-1/11-deficient mice, but they were suppressed significantly in IL-1R
207	type1 (IL-1R1)-deficient mice or after the subcutaneous administration of an IL-1R
208	antagonist (Fig. 6a and b). Consistent with these observations, the elicitation of CHS and
209	IFN- γ production by skin-infiltrating T cells were significantly attenuated in IL-1α/β-
210	deficient mice (Fig. 6c and d). In addition, the formation of dDC clusters was suppressed
211	significantly by the subcutaneous injection of an anti-IL-1 α neutralizing antibody, but only
212	marginally by an anti-IL-1 β neutralizing antibody (Fig. 6b). Given that IL-1 α production by
213	keratinocytes upon hapten application is a well-known phenomenon ¹⁴ , our results support a
214	major role for IL-1 α in mediating the formation of DC clustering.
215	
216	M2-phenotype macrophages produce CXCL2 to attract dDCs
217	To further characterize how macrophages attract dDCs, we examined Il1r1 expression in

BM-derived M1- and M2-phenotype macrophages based on the differential	mDNA
expression of TNF-α, Nos2, IL-12a, Arg-1, Retnla, and Chi313 (Suppleme)	
We found that M2-phenotype macrophages expressed higher levels of <i>Il1r1</i>	•
M1-phenotype macrophages (Fig. 6e). We also found that a subcutaneous in	3
pertussis toxin, a Gi-specific inhibitor, completely attenuated DC cluster for	rmation in
response to hapten-stimuli (Fig. 6b). We therefore focused on the expression	n levels of
Gi-coupled chemokine signaling in the following studies.	
We employed microarray analysis to examine chemokine expression leve	els in M1- and
M2-phenotype macrophages with or without IL-1 α stimulation. No chemok	tine expression
was enhanced in M1-phenotype macrophages with IL-1α treatment, wherea	as CCL5, CCL17,
CCL22, and CXCL2 mRNA expression levels were increased in M2-phenor	type macrophages
(Supplementary Table 1). Among them, CXCL2 expression was enhanced	most prominently
by treatment with IL-1 α , which was also validated by real-time polymerase	chain reaction
(PCR) analysis (Fig. 6f). Consistently, CXCL2 expression was significantly	increased in
DNFB-painted skin (Supplementary Fig. 9a) and was not affected by neutrons.	rophil-depletion
with 1A8 (Supplementary Fig. 9b and c). In addition, IL-1α-treated derma	al macrophages
produced CXCL2 <i>in vitro</i> (Supplementary Fig. 9d). These results suggest	that dermal
macrophages, but not neutrophils, are the major sources of CXCL2 during 0	CHS. We detected
mRNA of CXCR2, the receptor for CXCL2, at high levels in DCs (Supplement)	nentary Fig. 9e).
These findings prompted us to examine the role of CXCR2 on dDCs. The fo	ormation of DC
clusters in response to hapten stimuli was attenuated substantially via intrap	eritoneal
administration of a CXCR2 inhibitor <u>SB265610</u> ¹⁶ (Fig. 6g). <u>In addition, SE</u>	<u>3265610-treatment</u>
during the elicitation of CHS inhibited the ear swelling (Fig. 6h) and IFN-γ	production by
241 <u>skin infiltrating T cells (Fig. 6i).</u> Taken together, these findings suggest that	dermal
macrophages are essential for initiating DC cluster formation through the pr	roduction of
CXCL2, and that DC clustering plays an important role for efficient activation	ion of
244 <u>skin-infiltrating T cells</u> .	
245	
246	
247 DISCUSSION	
Here we have identified leukocyte clusters in the skin induced by antigen ch	nallenge using the
murine CHS model. This is the first study that clearly analyses how DCs an	•

effector/memory T cells encounter one another and then interact to induce efficient

251	antigen-specific immune responses in the skin. We demonstrated that dDCs, but not
252	epidermal LCs, are essential for antigen presentation to skin-infiltrating effector T cells. In
253	addition, dDCs exhibit sustained association with effector T cells in an antigen- and
254	LFA-1-dependent manner. Intriguingly, IL-1 α and not the inflammasome, initiates the
255	formation of perivascular DC clusters.
256	Although the mechanistic events in the sensitization phase in cutaneous immunity have
257	been studied thoroughly over 20 years 17, 18, one of the unresolved important questions in
258	cutaneous immunity is what types of immunological events occur during the elicitation
259	phases. Our present study illustrates the antigen recognition process in the skin (Fig. 7).
260	Epidermal contact with antigens triggers release of IL-1 in the skin ¹⁴ . Previous studies have
261	shown that the epidermal keratinocytes constitute a major reservoir of IL-1 α^6 and mechanical
262	stress to keratinocytes permits release of large amounts of IL-1 α even in the absence of cell
263	death ¹⁹ . The precise source and production mechanism of IL-1α in this process need to be
264	determined in future studies. IL-1 signal then seems to activate macrophages that
265	subsequently attract dDCs, mainly to areas around post-capillary venules where
266	effector/memory T cells in the blood transmigrate into the skin ²⁰ . In the absence of
267	antigen-specific effector/memory T cells to a cognate antigen (i.e. in the sensitization phase
268	of CHS; Fig. 7a), DC clustering is a transient event, and hapten-carrying DCs migrate into
269	draining LNs to establish sensitization. On the other hand, DC clustering is followed by T cell
270	accumulation in the presence of the antigen and antigen-specific effector/memory T cells (i.e.
271	in the elicitation phase of CHS; Fig. 7b). We propose that these perivascular dDC clusters
272	may provide antigen-presentation sites for efficient effector T cell activation. In fact, CHS
273	responses and intracutaneous T cell activation were attenuated significantly in the absence of
274	the leukocyte clusters by depleting macrophages, or inhibiting integrin functions (Fig. 3),
275	IL-1R signaling ^{21, 22} , or CXCR2 ²³ .
276	In contrast to the skin, antigen presentations in other peripheral organs are rather well
277	clarified. For example, in submucosal areas, specific sentinel lymphoid tissues, called
278	mucosa-associated lymphoid tissue (MALT), serve as peripheral antigen presentation sites ²⁴ ,
279	and lymphoid follicles are present in the normal bronchi (bronchus-associated lymphoid
280	tissue; BALT). These tissues serve as antigen presentation sites in non-lymphoid peripheral
281	organs. By analogy, the concept of skin-associated lymphoid tissue (SALT) was proposed in
282	the early 1980's, based on findings that cells in the skin are capable of capturing, processing,
283	and presenting antigens ^{25, 26} . However, the roles played by the various skin components as

antigen presentation sites remain uncertain. In this study, we have identified the inducible structure formed by <u>dermal</u> macrophages, dDCs and effector T cells sequentially. Since formation of this structure is essential for efficient effector T cell activation, these inducible leukocyte clusters may function as SALT. Unlike MALT, these leukocyte clusters are not found in the steady state thus far but inducible during the development of acquired immune response. Therefore, this cluster may be better named as inducible SALT (iSALT), like inducible BALT (iBALT) in the lung²⁷. In contrast to iBALT, naïve T cells or B cells are absent therein thus far (data not shown), suggesting that the leukocyte clusters in the skin may be specialized for effector T cell activation but not for naïve T cell activation. Our findings suggest that approaches to the selective inhibition of this structure may have novel therapeutic benefit in inflammatory disorders of the skin.

296	REFE	RENCES
297	1.	von Andrian UH, Mempel TR. Homing and cellular traffic in lymph nodes. Nat Rev
298		<i>Immunol</i> 2003, 3 (11): 867-878.
299		
300	2.	Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowgiert RK, et al.
301		The vast majority of CLA+ T cells are resident in normal skin. J Immunol 2006,
302		176 (7): 4431-4439.
303		
304	3.	Wang L, Bursch LS, Kissenpfennig A, Malissen B, Jameson SC, Hogquist KA.
305		Langerin expressing cells promote skin immune responses under defined conditions. ${\it J}$
306		Immunol 2008, 180 (7): 4722-4727.
307		
308	4.	Tuckermann JP, Kleiman A, Moriggl R, Spanbroek R, Neumann A, Illing A, et al.
309		Macrophages and neutrophils are the targets for immune suppression by
310		glucocorticoids in contact allergy. J Clin Invest 2007, 117(5): 1381-1390.
311		
312	5.	Sims JE, Smith DE. The IL-1 family: regulators of immunity. <i>Nat Rev Immunol</i> 2010,
313		10 (2): 89-102.
314		
315	6.	Murphy JE, Robert C, Kupper TS. Interleukin-1 and cutaneous inflammation: a
316		crucial link between innate and acquired immunity. J Invest Dermatol 2000, 114(3):
317		602-608.
318		
319	7.	Nakae S, Komiyama Y, Narumi S, Sudo K, Horai R, Tagawa Y, et al. IL-1-induced
320		tumor necrosis factor-alpha elicits inflammatory cell infiltration in the skin by
321		inducing IFN-gamma-inducible protein 10 in the elicitation phase of the contact
322		hypersensitivity response. Int Immunol 2003, 15(2): 251-260.
323		
324	8.	Thyssen JP, Linneberg A, Menne T, Nielsen NH, Johansen JD. Contact allergy to
325		allergens of the TRUE-test (panels 1 and 2) has decreased modestly in the general
326		population. Br J Dermatol 2009, 161 (5): 1124-1129.
327		
328	9.	Springer TA, Dustin ML. Integrin inside-out signaling and the immunological synapse.

Curr Opin Cell Biol 2012, **24**(1): 107-115.

330		
331	10.	Egawa G, Honda T, Tanizaki H, Doi H, Miyachi Y, Kabashima K. In vivo imaging of
332		T-cell motility in the elicitation phase of contact hypersensitivity using two-photon
333		microscopy. J Invest Dermatol 2011, 131(4): 977-979.
334		
335	11.	Miyawaki S, Nakamura Y, Suzuka H, Koba M, Yasumizu R, Ikehara S, et al. A new
336		mutation, aly, that induces a generalized lack of lymph nodes accompanied by
337		immunodeficiency in mice. Eur J Immunol 1994, 24 (2): 429-434.
338		
339	12.	Sawaguchi M, Tanaka S, Nakatani Y, Harada Y, Mukai K, Matsunaga Y, et al. Role of
340		mast cells and basophils in IgE responses and in allergic airway hyperresponsiveness.
341		J Immunol 2012, 188 (4): 1809-1818.
342		
343	13.	Otsuka A, Kubo M, Honda T, Egawa G, Nakajima S, Tanizaki H, et al. Requirement
344		of interaction between mast cells and skin dendritic cells to establish contact
345		hypersensitivity. <i>PLoS One</i> 2011, 6 (9): e25538.
346		
347	14.	Enk AH, Katz SI. Early molecular events in the induction phase of contact sensitivity.
348		Proc Natl Acad Sci U S A 1992, 89 (4): 1398-1402.
349		
350	15.	Weisser SB, McLarren KW, Kuroda E, Sly LM. Generation and characterization of
351		murine alternatively activated macrophages. Methods Mol Biol 2013, 946: 225-239.
352		
353	16.	Liao L, Ning Q, Li Y, Wang W, Wang A, Wei W, et al. CXCR2 blockade reduces
354		radical formation in hyperoxia-exposed newborn rat lung. <i>Pediatr Res</i> 2006, 60 (3):
355		299-303.
356		
357	17.	Honda T, Egawa G, Grabbe S, Kabashima K. Update of immune events in the murine
358		contact hypersensitivity model: toward the understanding of allergic contact
359		dermatitis. J Invest Dermatol 2013, 133(2): 303-315.
360		
361	18.	Kaplan DH, Igyarto BZ, Gaspari AA. Early immune events in the induction of allergic
362		contact dermatitis. <i>Nat Rev Immunol</i> 2012, 12 (2): 114-124.
363		

364	19.	Lee RT, Briggs WH, Cheng GC, Rossiter HB, Libby P, Kupper T. Mechanical
365		deformation promotes secretion of IL-1 alpha and IL-1 receptor antagonist. <i>J Immunol</i>
366		1997, 159 (10): 5084-5088.
367		
368	20.	Sackstein R, Falanga V, Streilein JW, Chin YH. Lymphocyte adhesion to psoriatic
369		dermal endothelium is mediated by a tissue-specific receptor/ligand interaction. J
370		Invest Dermatol 1988, 91 (5): 423-428.
371		
372	21.	Kish DD, Gorbachev AV, Fairchild RL. IL-1 receptor signaling is required at multiple
373		stages of sensitization and elicitation of the contact hypersensitivity response. J
374		Immunol 2012, 188 (4): 1761-1771.
375		
376	22.	Kondo S, Pastore S, Fujisawa H, Shivji GM, McKenzie RC, Dinarello CA, et al.
377		Interleukin-1 receptor antagonist suppresses contact hypersensitivity. J Invest
378		Dermatol 1995, 105 (3).
379		
380	23.	Cattani F, Gallese A, Mosca M, Buanne P, Biordi L, Francavilla S, et al. The role of
381		CXCR2 activity in the contact hypersensitivity response in mice. Eur Cytokine Netw
382		2006, 17 (1): 42-48.
383		
384	24.	Brandtzaeg P, Kiyono H, Pabst R, Russell MW. Terminology: nomenclature of
385		mucosa-associated lymphoid tissue. Mucosal Immunol 2008, 1(1): 31-37.
386		
387	25.	Streilein JW. Skin-associated lymphoid tissues (SALT): origins and functions. J Invest
388		Dermatol 1983, 80 Suppl: 12s-16s.
389		
390	26.	Egawa G, Kabashima K. Skin as a peripheral lymphoid organ: revisiting the concept
391		of skin-associated lymphoid tissues. J Invest Dermatol 2011, 131(11): 2178-2185.
392		
393	27.	Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F, Goodrich S,
394		et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory
395		immunity. Nat med 2004, 10 (9): 927-934.
396		
397	28.	Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N, et al.

398		Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize
399		lymph node areas distinct from slower migrating Langerhans cells. <i>Immunity</i> 2005,
400		22 (5): 643-654.
401		
402	29.	Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, et al. In vivo
403		depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous
404		cell-associated antigens. Immunity 2002, 17(2): 211-220.
405		
406	30.	Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, Dustin ML, et al.
407		Visualizing dendritic cell networks in vivo. <i>Nat immunol</i> 2004, 5 (12): 1243-1250.
408		
409	31.	Miyake Y, Kaise H, Isono K, Koseki H, Kohno K, Tanaka M. Protective role of
410		macrophages in noninflammatory lung injury caused by selective ablation of alveolar
411		epithelial type II Cells. <i>J Immunol</i> 2007, 178 (8): 5001-5009.
412		
413	32.	Hao Z, Rajewsky K. Homeostasis of peripheral B cells in the absence of B cell influx
414		from the bone marrow. J Exp Med 2001, 194 (8): 1151-1164.
415		
416	33.	Horai R, Asano M, Sudo K, Kanuka H, Suzuki M, Nishihara M, et al. Production of
417		mice deficient in genes for interleukin (IL)-1alpha, IL-1beta, IL-1alpha/beta, and IL-1
418		receptor antagonist shows that IL-1beta is crucial in turpentine-induced fever
419		development and glucocorticoid secretion. J Exp Med 1998, 187(9): 1463-1475.
420		
421	34.	Coban C, Igari Y, Yagi M, Reimer T, Koyama S, Aoshi T, et al. Immunogenicity of
422		whole-parasite vaccines against Plasmodium falciparum involves malarial hemozoin
423		and host TLR9. Cell Host Microbe 2010, 7 (1): 50-61.
424		
425	35.	Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid
426		crystals activate the NALP3 inflammasome. <i>Nature</i> 2006, 440 (7081): 237-241.
427		
428	36.	Koedel U, Winkler F, Angele B, Fontana A, Flavell RA, Pfister HW. Role of
429		Caspase-1 in experimental pneumococcal meningitis: Evidence from pharmacologic
430		Caspase inhibition and Caspase-1-deficient mice. <i>Ann Neurol</i> 2002, 51 (3): 319-329.
431		

Tomura M, Honda T, Tanizaki H, Otsuka A, Egawa G, Tokura Y, *et al.* Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. *J Clin Invest* 2010, **120**(3): 883-893.

437	METHODS
438	Mice
439	Female 8- to 12-week-old C57BL/6-background mice were used in this study. C57BL/6N
440	mice were purchased from SLC (Shizuoka, Japan). Langerin-eGFP-DTR ²⁸ , CD11c-DTR ²⁹ ,
441	CD11c-YFP ³⁰ , LysM-DTR ³¹ , Rag2-deficient ³² , MasTRECK ^{12, 13} , BasTRECK ^{12, 13} ,
442	ALY/NscJcl-aly/aly ¹¹ , IL-1α/β-deficient ³³ , IL-1R1-deficient ³⁴ , NLRP3-deficient ³⁵ , and
443	caspase-1/11-deficient mice ³⁶ were described previously. All experimental procedures were
444	approved by the Institutional Animal Care and Use Committee of Kyoto University Graduate
445	School of Medicine.
446	
447	Human Subjects
448	Human skin biopsy samples were obtained from a nickel-reactive patch after 72 h from
449	placement of nickel patch tests in patients with a previously proven allergic contact dermatitis.
450	A biopsy of petrolatum-occluded skin was also obtained as a control. Informed consent was
451	obtained under IRB approved protocols at the Icahn School of Medicine at Mount Sinai
452	School Medical Center, and the Rockefeller University in New York.
453	
454	Induction of contact hypersensitivity (CHS) response
455	Mice were sensitized on shaved abdominal skin with 25 μ l 0.5% (w/v)
456	1-fluoro-2,4-dinitrofluorobenzene (DNFB; Nacalai Tesque, Kyoto, Japan) dissolved in
457	acetone/olive oil (4/1). Five days later, the ears were challenged with 20 μ l 0.3% DNFB. For
458	adoptive transfer, T cells were magnetically sorted using auto MACS (Miltenyi Biotec,
459	Bergisch Gladbach, Germany) from the draining LNs of sensitized mice and then transferred
460	1x 10 ⁷ cells intravenously into naïve mice.
461	
462	Depletion of cutaneous DC subsets, macrophages, and neutrophils
463	To deplete all cutaneous DC subsets (including LCs), 6-week-old Langerin-DTR mice were
464	irradiated (two doses of 550 Rad given 3 h apart) and were transferred with 1 x 10^7 BM cells
465	from CD11c-DTR mice. Eight weeks later, 2 µg diphtheria toxin (DT; Sigma-Aldrich, St.
466	Louis, MO) was intraperitoneally injected. To selectively deplete LCs, irradiated
467	Langerin-DTR mice were transferred with BM cells from C57BL/6 mice, and 1 μg DT was
468	injected. To selectively deplete dermal DCs, irradiated C57BL/6 mice were transferred with
469	BM cells from CD11c-DTR mice, and 2 µg DT was injected. For macrophage depletion,

470irradiated C57BL/6 mice were transferred with BM cells from LysM-DTR mice and 800 ng DT was injected. For neutrophil depletion, 0.5 mg/body anti-Ly6G antibody (1A8, BioXCell, 471 472 Shiga, Japan) were intravenously administered to mice 24 h before experiment. 473Time-lapse imaging of cutaneous DCs, macrophages, and T cells 474Cutaneous DCs were observed using CD11c-YFP mice. To label cutaneous macrophages in 475vivo, 5 mg TRITC-dextran (Sigma-Aldrich) was intravenously injected and mice were left for 47624 h. At that time, cutaneous macrophages become fluorescent because they incorporated 477extravasated dextran. To label skin-infiltrating T cells, T cells from DNFB-sensitized mice 478were labeled with CellTracker Orange CMTMR (Invitrogen, Carlsbad, CA) and adoptively 479transferred. Keratinocytes and sebaceous glands were visualized with the subcutaneous 480injection of isolectin B4 (Invitrogen) and BODIPY (Molecular Probes, Carlsbad, CA), 481 respectively. Mice were positioned on the heating plate on the stage of a two-photon 482microscope IX-81 (Olympus, Tokyo, Japan) and their ear lobes were fixed beneath a cover 483slip with a single drop of immersion oil. Stacks of 10 images, spaced 3 µm apart, were 484 acquired at 1 to 7 min intervals for up to 24 h. To calculate T cell and DC velocities, movies 485from 3 independent mice were processed and analyzed using Imaris 7.2.1 (Bitplane, South 486 Windsor, CT) for each experiment. 487 488Histology and immunohistochemistry 489For histological examination, tissues were fixed with 10% formalin in phosphate buffer saline, 490and then embedded in paraffin. Sections with a thickness of 5 µm were prepared and 491 subjected to staining with hematoxylin and eosin. For whole-mount staining, the ears were 492split into dorsal and ventral halves, and incubated with 0.5 M ammonium thiocyanate for 30 493 min at 37°C ³⁷. Then the dermal sheets were separated and fixed in acetone for 10 min at 494 -20°C. After treatment with Image-iT FX Signal Enhancer (Invitrogen), the sheets were 495 incubated with anti-mouse MHC class II antibody (eBioscience, San Diego, CA) followed by 496 incubation with secondary antibody conjugated to Alexa 488 or 594 (Invitrogen). The slides 497 were mounted using a ProLong Antifade kit with DAPI (Molecular Probes) and observed 498 499under a fluorescent microscope (BZ-900, KEYENCE, Osaka, Japan). The number/size of DC clusters were evaluated in 10 fields of 1mm²/ ear and were scored according to the criteria 500501 shown in Supplementary Fig. 5a.

503	Antibodies and flow cytometry
504	Anti-mouse CD4, CD8, CD11b, CD11c, B220, MHC class II, F4/80, IFN-γ, Gr1 antibodies,
505	and 7-amino-actinomycin D (7AAD) were purchased from eBioscience. Anti-mouse CD45
506	antibody (BioLegend, San Diego, CA), anti-TCR-β antibody (BioLegend), and
507	anti-CD16/CD32 antibody (BD Biosciences) were purchased. Flow cytometry was performed
508	using LSRFortessa (BD Biosciences) and analyzed with FlowJo (TreeStar, San Carlos, CA).
509	
510	Chemotaxis assay
511	Chemotaxis was performed as described previously with some modifications ³⁷ . In brief, ear
512	splits were minced and digested with 2 mg/ml collagenase type II (Worthington Biochemical,
513	NY) containing 1 mg/ml hyaluronidase (Sigma-Aldrich) and 100 $\mu g/ml$ DNase I
514	(Sigma-Aldrich) for 30 min at 37°C. DDCs and macrophages were isolated using
515	auto-MACS. Alternatively, BM-derived DCs and macrophages were prepared. 1×10^6 DCs
516	were added to the 5 μm pore-size transwell insert (Corning, Cambridge, MA) and 5 x 10^5
517	macrophages were added into the lower wells, and the cells were incubated at 37°C for 12 h.
518	A known number of fluorescent reference beads (FlowCount fluorospheres, Beckman Coulter
519	Fullerton, CA) were added to each sample to allow accurate quantification of migrated cells
520	in the lower wells by flow cytometry.
521	
522	Cell proliferation assay with CellTrace TM Violet
523	Mice were sensitized with 25 μ l 0.5% DNFB or 7% trinitrochlorobenzene (Chemical Industry
524	Tokyo, Japan). Five days later, T cells were magnetically separated from the draining LNs of
525	each group, and labeled with CellTrace TM Violet (Invitrogen) as per the manufacturer's
526	protocol. Ten million T cells were adoptively transferred to naïve mice, and the ears were
527	challenged with 20 μl of 0.5% DNFB. Twenty-four hours later, ears were collected and
528	analyzed by flow cytometry.
529	
530	In vitro differentiation of DCs, M1 and M2-phenotype macrophages from BM cells
531	BM cells from the tibias and fibulas were plated $5x10^6$ cells/ 10 cm dishes on day 0. For DC
532	differentiation, cells were cultured at 37°C in 5% CO ₂ in cRPMI medium
533	(RPMI supplemented with 1% L-glutamine, 1% Hepes, 0.1% 2ME and 10% fetal bovine
534	serum) containing 10 ng/mL GM-CSF (Peprotech, Rocky Hill, NJ). For macrophages
535	differentiation. BM cells were cultured in cRPMI containing 10 ng/mL M-CSF (Peprotech).

536	Medium was replaced on days 3 and 6 and cells were harvested on day 9. To induce M1 or
537	M2 phenotypes, cells were stimulated for 48 h with IFN-γ (10 ng/mL; R&D Systems,
538	Minneapolis, MN) or with IL-4 (20 ng/mL; R&D Systems), respectively.
539	
540	In vitro IL-1α stimulation assay of dermal macrophages
541	Dermal macrophages were separated from IL-1 α/β -deficient mice ³³ to avoid pre-activation
542	during cell preparations. Ear splits were treated with 0.25% trypsin/EDTA for 30 min at 37°C
543	to remove epidermis and then minced and incubated with collagenase as previously described.
544	CD11b ⁺ cells were separated using MACS and 2x10 ⁵ cells/well were incubated with or
545	without 10 ng/ml IL-1 α (R&D systems) in 96-well plate for 24 h.
546	
547	Blocking assay
548	For LFA-1 blocking assay, mice were intravenously injected with 100 µg anti-LFA-1
549	neutralizing antibody, KBA, 12-14 h after challenge with 20 µl 0.5% DNFB. For IL-1R
550	blocking, mice were subcutaneously injected with 10 µg IL-1R antagonist (PROSPEC, East
551	Brunswick, NJ) 5 h before challenge. For blocking of CXCR2, mice were intraperitoneally
552	treated with 50 µg CXCR2 inhibitor SB265610 ¹⁶ (Tocris Bioscience, Bristol, UK) 6 h before
553	and at hapten painting.
554	
555	Quantitative PCR analysis
556	Total RNA was isolated using an RNeasy Mini kit (Qiagen, Hilden, Germany). cDNA was
557	synthesized using a PrimeScript RT reagent kit (TaKaRa, Ohtsu, Japan) with random
558	hexamers as per the manufacturer's protocol. Quantitative PCR was carried out with a
559	LightCycler 480 using a LightCycler SYBR Green I master (Roche, Lewes, UK) as per the
560	manufacturer's protocol. The relative expression of each gene was normalized against that of
561	Gapdh. Primer sequences were as follows: Il1r1 forward,
562	ATGAGTTACCCGAGGTCCAGTG, and reverse, TACTCGTGTGACCGGATATTGC;
563	Cxcl2 forward, CAAACCGAAGTCATAGCCAC, and reverse,
564	TCTGGTCAGTTGGATTTGCC; Ccr4 forward, GAAGAGCAAGGCAGCTCAAC, and
565	reverse, GACCTCCCAAATGCCTTGA; Ccr8 forward,
566	ATAATTGGTCTTCCTGCCTCGAT, and reverse CTGAGGAGGAACTCTGCGTC; Cxcr2
567	forward, ACTACTGCAGGATTAAGTTTACCTC, and reverse,
568	TCTCTGAGTGGCATGGGACA; Cxcr3 forward, GCCATGTACCTTGAGGTTAGTGA,

569	and reverse ATCGTAGGGAGAGGTGCTGT; Cxcr6 forward,				
570	ACTGGGCTTCTCTGATGC, and reverse, AAGCGTTTGTTCTCCTGGCT; Tnf				
571	forward, CCCCAAAGGGATGAGAAGTT and reverse CACTTGGTGGTTTGCTACGA;				
572	Nos2 forward, GTTCTCAGCCCAACAATACAAGA, and reverse,				
573	GTGGACGGGTCGATGTCAC; Il12a forward, CTGTGCCTTGGTAGCATCTATG, and				
574	reverse, GCAGAGTCTCGCCATTATGATTC; Arg1 forward,				
575	ACCATAAGCCAGGGACTGAC, and reverse, AGGAGAAGGCGTTTGCTTAG; Retnla				
576	forward, CCAATCCAGCTAACTATCCCTCC, and reverse,				
577	ACCCAGTAGCAGTCATCCCA; Chi313 forward, AGAAGGGAGTTTCAAACCTGGT,				
578	and reverse, GTCTTGCTCATGTGTAAGTGA, and Gapdh forward,				
579	GGCCTCACCCCATTTGATGT, and reverse, CATGTTCCAGTATGACTCCACTC.				
580					
581	Microarray analysis				
582	Total RNA was isolated using the RNeasy Mini Kit (Qiagen) as per the manufacturers'				
583	protocol. An amplified sense-strand DNA product was synthesized by the Ambion WT				
584	Expression Kit (Life Technologies, Gaithersburg, MD), and was fragmented and labeled by				
585	the WT Terminal Labeling and Controls Kit (Affymetrix, Santa Clara, CA), and was				
586	hybridized to the Mouse Gene 1.0 ST Array (Affymetrix). We used the robust multi-array				
587	average algorithm for log transformation (log2) and normalization of the GeneChip data.				
588					
589	General experimental design and statistical analysis				
590	For animal experiments, a sample size of three to five mice per group was determined on the				
591	basis of past experience in generating statistical significance. Mice were randomly assigned				
592	to study groups and no specific randomization or blinding protocol was used. Sample or				
593	mouse identity was not masked for any of these studies. Statistical analyses were performed				
594	using Prism software (GraphPad Software Inc.). Normal distribution was assumed a priori for				
595	all samples. Unless indicated otherwise, an unpaired parametric t-test was used for				
596	comparison of data sets. In cases in which the data point distribution was not Gaussian, a				
597	nonparametric <i>t</i> -test was also applied. <i>P</i> values of less than 0.05 were considered significant.				
598					
599					
600	ACKNOWLEDGEMENTS				
601	We appreciate Dr. Paul Bergstresser and Dr. Jason Cyster for critical reading of our				
602	manuscript. This work was supported in part by Grants-in-Aid for Scientific Research from				

603	the Ministry of Education, Culture, Sports, Science and Technology of Japan.
604	
605	
606	AUTHOR CONTRIBUTIONS
607	Y.N., G.E., and K.K designed this study and wrote the manuscript. Y.N., G.E, S.N., S.H., S.O.
608	N.K., A.O., A.K., T.H., and S.N. performed the experiments and data analysis. S.T. and Y.S.
609	did experiments related to microarray analysis. J.F. and E. G-Y did experiments related to
610	immunohistochemistry of human samples. K.J.I, H.T., H. Y, Y. I., L.G.N., and M.K.
611	developed experimental reagents and gene-targeted mice. T.O., Y.M., and K.K. directed the
612	project and edited the manuscript. All authors reviewed and discussed the manuscript.
613	
614	
615	COMPETENG FINANCIAL INTERESTS
616	The authors declare no competing financial interests.

Figure Legends

618

Figure 1: DC–T cell cluster formation is responsible for epidermal eczematous conditions. 619 620 (a) Clinical manifestations of allergic contact dermatitis in human skin 48 h after a patch test with nickel. Scale bar = $200 \mu m$. (b) Hematoxylin and eosin, anti-CD3, and anti-CD11c 621 622 staining of the human skin biopsy sample from an eczematous legion. Asterisks and arrowheads denote epidermal vesicles and dDC-T cell clusters, respectively. Scale bar = 250 623 μm. (c) Sequential images of leukocyte clusters in the elicitation phase of CHS. White circles 624represent DC (green) and T cell (red) dermal accumulations. Scale bar = $100 \mu m$. (d) A high 625626magnification view of DC-T cell cluster in Fig.1c. Scale bar = $10 \mu m$. (e) Intercellular edema of the epidermis overlying DC-T cell cluster in the dermis. Keratinocytes (red) are visualized 627with isolectin B4. The right panel shows the mean distance between adjacent keratinocytes 628above (+) or not above (-) DC-T cell cluster (n=20, each). Scale bar = $10 \mu m$. (f) Ear 629630 swelling 24 h after CHS in subset-specific DC-depletion models (n = 5, each). *, P < 0.001. (g) The number (left) and the % frequency (right) of IFN-γ producing T cells in the ear 18 h 631 after CHS with or without dDC-depletion (n = 5, each). *, P < 0.05. 632633 Figure 2: Antigen-dependent T cell proliferation in DC-T cell clusters. (a) T cell 634 proliferation in the skin. CD4⁺ and CD8⁺ T cells from DNFB- (red) or TNCB- (blue) 635sensitized mice were labeled with CellTraceTM Violet and transferred. The dilutions of tracer 636 in the challenged sites were examined 24 h later. (b) Conjugation time of DNFB- (red, n =637 638 160) or TNCB-sensitized (blue, n = 60) T cells with dDCs 24 h after DNFB challenge. *, P < 0.05. (c) Sequential images of dividing T cells (red) in DC–T cell clusters. Green represents 639640dDCs. Arrowheads represent a dividing T cell. 641 Figure 3: LFA-1 is essential for the persistence of DC–T cell clustering and for T cell 642activation in the skin. (a) DC (green) and T cell (red) clusters in the DNFB-challenged site 643 before (0 h) and 9 h after KBA or isotype-matched IgG treatment. Scale bar = $100 \mu m$. (b) 644 Fold changes of T cell velocities in DNFB-challenged sites after KBA or control IgG 645treatment (n = 30, each). (c) Ear swelling 24 h after KBA (red) or control IgG (black) 646 treatment with DNFB challenge (n = 5, each). (d and e) IFN- γ production by CD8⁺ T cells (d) 647and the number of IFN-y producing cells in CD4⁺ or CD8⁺ populations (e) in KBA (red) or 648 control IgG (black) treated mice (n = 5, each). DNFB-sensitized mice were treated with KBA 649 or control IgG 12 h after DNFB challenge and the skin samples were obtained 6 h later. *, P 650

651 < 0.05. 652 Figure 4: Macrophages are essential for DC cluster formation. (a) Score of DC cluster 653 number 24 h and 48 h after DNFB application in sensitization (red) or elicitation (green) 654phase of CHS (n=4, each). (b) Score of DC cluster number in non-treated (NT) mice and 655 DNFB-applicated-C57BL/6 (WT), Rag2-deficient, aly/aly, MasTRECK, BasTRECK, 656LysM-DTR, and 1A8-treated mice (n=4, each). *, P < 0.05. (c) DC clusters observed in 657LysM-DTR BM chimeric mice with or without DT-treatment. Scale bar = $100 \mu m$. (d) Ear 658 swelling 24 h after DNFB application in LysM-DTR BM chimeric mice with (red) or without 659(black) DT-treatment (n = 5, each). (e) The number (left) and the % frequency (right) of 660 IFN-γ producing CD8⁺ T cells in the ear 18 h after DNFB application in LysM-DTR BM 661 chimeric mice with (red) or without (black) DT-treatment (n = 5, each). *, P < 0.05. 662 663 Figure 5: Macrophages mediate perivascular DC cluster formation. (a) A distribution of 664 665dDCs (green) in the steady state (left) and in the elicitation phase of CHS (right). The white circles show DC clusters. Sebaceous glands visualized with BODIPY (green) are indicated by 666 667 arrows. Blood vessels, yellow/red; macrophages, red. (b) A high magnification view of perivascular DC cluster. Scale bar = 100 µm.(c) Sequential images of dDCs (green) and 668 macrophages (red) in the elicitation phase of CHS. The white dashed line represents the track 669 of a DC. (d) Chemotaxis assay. % input of dDCs transmigrating into the lower chamber with 670 671 or without macrophages prepared from the skin. 672**Figure 6:** IL-1α upregulates CXCR2 ligands expression in M2-phenotype macrophages to 673 form DC clusters. (a) Scores of DC cluster numbers in NT or 24 h after hapten-painted sites 674 675in WT, IL-1R-, NALP3-, or caspase 1 (Casp1)-deficient mice (n=4, each). (b) Scores of DC 676 cluster numbers in NT or 24 h after hapten-painted sites in isotype control IgG, 677 anti-IL-α antibody, anti-IL-1β antibody, IL-1R antagonist, or pertussis toxin (Ptx)-treated 678 mice (n=4, each). (c, d) Ear swelling 24 h after DNFB application (c) and the number (left) and the % frequency (right) of IFN-y producing CD8+T cells in the ear 18 h after DNFB 679 application (d) in IL-1 α/β -deficient (red) and WT (black) mice (n = 5, each) which were 680 adoptively transferred with DNFB-sensitized T cells. *, P < 0.05. (e, f) Relative amount of 681 Il1r1 and Cxcl2 mRNA expression. Quantitative RT-PCR analysis of mRNA obtained from 682

M1 or M2-phenotype macrophages (e), cultured with (+) or without (-) IL-1 α (f) (n=4, each).

684	(g) Scores of DC cluster numbers in NT or 24 h after hapten-painted sites in the presence
685	(SB265610) or absence (vehicle) of a CXCR2 inhibitor (n=4, each). *, $P < 0.05$. (h, i) Ear
686	swelling 24 h after DNFB application (h) and the number (right) and the % frequency (left)
687	of IFN-γ producing CD8 ⁺ T cells 18 h after DNFB application (i) with (red) or without
688	(black) SB265610-treatment (n = 5, each). *, $P < 0.05$.
689	
690	Figure 7: A schema of immunological events in CHS response. (a) Sensitization phase.
691	Epidermal contact with antigens triggers release of IL-1 in the skin, which activates
692	macrophages that subsequently attract dDCs to perivascular area via CXCL2 to form clusters
693	In the absence of antigen-specific effector/memory T cells, DC clustering is a transient event
694	and hapten-carrying DCs migrate into draining LNs to establish sensitization. (b) Elicitation
695	phase. In the presence of antigen-specific effector/memory T cells, the antigen is recognized
696	efficiently in the DC clusters by antigen-specific effector T cells to form clusters, and
697	inflammation is induced promptly via activation and proliferation of antigen-specific effector
698	T cells.
699	
700	Supplementary Figure 1: DDC motility in elicitation phase of CHS.
701	(a) Superimposed 30-min tracks of 30 randomly selected dermal DCs in the x-y plane,
702	setting the starting coordinates to the origin. Tracks of a steady state, 6, 12, and 24 h after the
703	elicitation with DNFB are shown. (b and c) Velocity (b) and displacement (c) of dDCs at
704	each time point (n=30). Each bar represents the mean + SD. *, $P < 0.05$.
705	
706	Supplementary Figure 2: Subset-specific depletion of cutaneous DCs.
707	(a) A schematic representation of our strategy to generate subset-specific cutaneous DC
708	depletion models. To deplete all cutaneous DC subsets, Langerin-DTR mice were transferred
709	with BM cells from CD11c-DTR mice, and DT was injected. To selectively deplete LCs,
710	Langerin-DTR mice were transferred with BM cells from C57BL/6 mice, and DT was
711	injected. To selectively deplete dDCs, C57BL/6 mice were transferred with BM cells from
712	CD11c-DTR mice, and DT was injected. BMT; BM transplantation. (b) FACS plots of each
713	group of mice after DT treatment. In dermis, the percentages in CD45 ⁺ cells were indicated.
714	
715	Supplementary Figure 3: Histological findings of the ear skin after CHS.
716	HE staining of the ears of mice 24 h after challenge with DNFB. Mice were pretreated with

717or without sensitization, depleted of LCs and/or dDCs, and challenged with DFNB. Scale bar $= 100 \mu m.$ 718 719 Supplementary Figure 4: The skin-infiltrating T cells exhibit CD44+ CD62L- effector 720 memory phenotype. 721 CHS response was induced on the ear skin, and skin-infiltrating cells were stained and 722 723 analyzed with TCR beta, CD44, and CD62L antibodies by flow cytometry. 724 Supplementary Figure 5: DDC clusters are formed in response to various stimuli. 725 (a) The scoring criteria for DC clusters by numbers and diameters of clusters. (b) DC (green) 726 cluster formation 24 h after topical application without (NT) or with acetone, olive oil, 3% 727728 TNCB, 2% DNTB, 0.3% DNFB, or *Mycobacterium bovis BCG*-inoculation (n=4, each). (c) Scores of DC cluster numbers of each group 24 h after each stimuli. (d) DC (green) cluster 729 formation 24 h after topical application without (NT) or with 0.5% DNFB on the back skin 730 and footpad. Scale bar = $100 \mu m$. 731 732 Supplementary Figure 6: DC cluster formation is LFA-1-independent. 733 (a) Mobility of DCs and T cells of the cluster by treatment with anti-LFA-1 treatment. 734 735 Anti-LFA-1 neutralizing antibody, KBA, was injected intravenously 14 h after elicitation. T 736cell (red) clustering was dissolved but DC (green) clustering persisted 10 h after KBA-treatment. Scale bar = $100 \mu m.$ (b) Score of DC cluster number 24 h after DNFB 737 application with KBA (red) or control IgG (black) treatment (n=5, each). 738 739 Supplementary Figure 7: TRITC+ cells in the dermis represent macrophage phenotypes. 740 TRITC-conjugated dextran was injected and dermal suspension was prepared 24 h later. 741 742CD45⁺ and TRITC⁺ cells were further analyzed with CD11b and F4/80 antibodies by flow cytometry. 743 744Supplementary Figure 8: RT-PCR analysis for M1- and M2-phenotype macrophage 745markers. 746 747M1-phetnotype macrophage markers, such as TNF-α, Nos2, and IL-12a, and M2-phenotype 748macrophage markers, such as arginase (Arg)-1, Retnla, and Chi313, were examined in

BM-derived M1- and M2-phenotype macrophages. Each bar represents the mean + SD (n=3).

A.U., arbitrary units. *, P < 0.05. ***P < 0.0001. 750751 Supplementary Figure 9: Neutrophils are not essential for CXCL2 expression in 752**DNFB-painted skin.** 753 (a) Relative amount of *Il1r1* 24 h after with or without DNFB-sensitization (n=5). (b) 754 Relative amount of Cxcl2 in DNFB-painted skin in 1A8- or control IgG-treated mice (n=5, 755756 each). (c) FACS plot of DNFB-painted skin prepared from 1A8- or control IgG-treated mice. CD11b⁺ Gr-1⁺ neutrophils were significantly depleted with 1A8-treatment. (d) Relative 757758 amount of *Il1r1* from dermal macrophages cultured with or without IL-1 α (n=4, each). (e) 759 RT-PCR analysis of chemokine receptor mRNA expression in BM-derived DCs.

Supplementary Table 1: Chemokine expression profiles in M1- vs M2-phenotype macrophages with or without IL-1 α treatment by means of microarray analysis.

761

762

ratio (log2)

	Gene		M2_IL-1α	M1_IL-1α	M2_IL-1α
Gene Description	Symbol	M2/M1	/M1_IL-1α	/M1	/M2
chemokine (C motif) ligand 1	Xcl1	0.079755	-0.11996	0.029899	-0.16982
chemokine (C-C motif) ligand 1	Ccl1	0.001259	-0.24313	0.237145	-0.00725
chemokine (C-C motif) ligand 2	Ccl2	-0.44104	-0.33997	0.00156	0.10263
chemokine (C-C motif) ligand 3	Ccl3	-0.21153	-0.07617	0.08055	0.21591
chemokine (C-C motif) ligand 4	Ccl4	-0.56782	-0.30699	0.253582	0.514407
chemokine (C-C motif) ligand 5	Ccl5	-5.72304	-4.22995	-0.01614	1.476948
chemokine (C-C motif) ligand 6	Ccl6	1.88874	2.10452	-0.24231	-0.02653
chemokine (C-C motif) ligand 7	Ccl7	-0.2329	-0.32698	0.10564	0.01156
chemokine (C-C motif) ligand 8	Ccl8	-1.61746	-1.40666	-0.05775	0.153052
chemokine (C-C motif) ligand 9	Ccl9	0.44612	0.50154	-0.03128	0.02414
chemokine (C-C motif) ligand 11	Ccl11	0.077222	0.340821	-0.10453	0.159072
chemokine (C-C motif) ligand 12	Ccl12	-3.17708	-2.41643	-0.25347	0.507182
chemokine (C-C motif) ligand 17	Ccl17	1.713942	3.668465	-0.06557	1.888951
chemokine (C-C motif) ligand 20	Ccl20	0.160738	-0.42807	0.24176	-0.34705
chemokine (C-C motif) ligand 21a	Ccl21a	-0.09737	-0.12556	-0.03861	-0.0668
chemokine (C-C motif) ligand 22	Ccl22	-0.02726	1.771884	-0.12263	1.676516
chemokine (C-C motif) ligand 24	Ccl24	4.180073	4.708531	0.077052	0.60551
chemokine (C-C motif) ligand 25	Ccl25	-0.2785	-0.32217	0.142979	0.099304
chemokine (C-C motif) ligand 26	Ccl26	0.133507	-0.12029	0.103554	-0.15024
chemokine (C-C motif) ligand 27a	Ccl27a	0.127154	0.115419	0.007782	-0.00395

chemokine (C-C motif) ligand 27b	Ccl27b	0.246656	0.148537	0.048522	-0.0496
chemokine (C-C motif) ligand 28	Ccl28	1.03498	1.441795	-0.18907	0.217748
chemokine (C-X-C motif) ligand 1	Cxcl1	-0.04569	-0.02674	0.007147	0.026103
chemokine (C-X-C motif) ligand 2	Cxcl2	-1.61789	1.432005	0.130248	3.180143
chemokine (C-X-C motif) ligand 3	Cxcl3	0.185853	0.371034	-0.14298	0.042196
chemokine (C-X-C motif) ligand 5	Cxcl5	0.150911	0.063672	0.178769	0.09153
chemokine (C-X-C motif) ligand 9	Cxcl9	-7.44194	-6.83237	-0.00444	0.605132
chemokine (C-X-C motif) ligand 10	Cxcl10	-6.8282	-5.0165	-0.16726	1.644438
chemokine (C-X-C motif) ligand 11	Cxcl11	-4.88792	-5.05843	0.11235	-0.05816
chemokine (C-X-C motif) ligand 12	Cxcl12	0.455115	0.009638	0.245324	-0.20015
chemokine (C-X-C motif) ligand 13	Cxcl13	-0.20062	-0.25052	-0.02902	-0.07892
chemokine (C-X-C motif) ligand 14	Cxcl14	0.389156	0.354584	0.107933	0.073361
chemokine (C-X-C motif) ligand 15	Cxcl15	-0.16601	-0.05923	-0.05137	0.055403
chemokine (C-X-C motif) ligand 16	Cxcl16	-2.73158	-1.55457	0.0482	1.225208
chemokine (C-X-C motif) ligand 17	Cxcl17	0.019214	0.148531	0.002397	0.131714
chemokine (C-X3-C motif) ligand 1	Cx3cl1	0.228177	0.266712	-0.0622	-0.02366

Video 1: Leukocyte cluster formation in elicitation phase of DNFB-induced CHS response.

CMTMR-labeled DNFB-sensitized T cells were transferred into CD11c-YFP mice and then challenged with DNFB to the ear. CD11c⁺ dermal DCs (green) and T cells (red) formed clusters approximately 6 h after hapten application. The images were taken every 7 min for 24 h.

Video 2: High magnification view of leukocyte cluster in the elicitation phase of CHS.

CMTMR-labeled DNFB-sensitized T cells were transferred into CD11c-YFP mice and then challenged with DNFB to the ear. Sixteen hours later, the established DC-T cell cluster was

775	observed in high magnification view for 2 h every 1 min. In this leukocyte cluster, some of T
776	cells (red) interacted with dermal DCs (green) for more than 2 h. The pale yellow debris are
777	melanin granules. Fragmented red and green debris seems to be indicative of dead T cells and
778	DCs engulfed by macrophages, respectively.
779	
780	Video 3: T cell division in the skin.
781	CMTMR-labeled DNFB-sensitized T cells divided in DNFB-challenged site. The mean
782	frequency of T cell division was $1.67 \pm 1.81 / h / mm^2$ (calculated from 5 movies which
783	recorded more than an hour).
784	
785	Video 4: Macrophages attracted dermal DCs.
786	TRITC-conjugated dextran was intravenously injected to DNFB-sensitized CD11c-YFP mice
787	to label skin macrophages. The next day, ear skin was challenged with DNFB and examined
788	using two-photon microscopy. In this representative movie, a dermal DC (green) migrated
789	toward TRITC-positive macrophages (red).