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Abstract

In prognostic studies, a summary statistic such as a hazard ratio is often
reported between low-expression and high-expression groups of a biomarker
with a study-specific cut-off value. Recently, several meta-analyses of prog-
nostic studies have been reported, but these studies simply combined haz-
ard ratios provided by the individual studies, overlooking the fact that
the cut-off values are study-specific. We propose a method to summarize
hazard ratios with study-specific cut-off values by estimating the hazard
ratio for a 1-unit change of the biomarker in the underlying individual-
level model. To this end, we introduce a model for a relationship between
a reported log- hazard ratio for a 1-unit expected difference in the mean
biomarker value between the low- and high- expression groups, which ap-
proximates the individual-level model, and propose to make an inference
of the model by using the method for trend estimation based on grouped
exposure data. Our combined estimator provides a valid interpretation if
the biomarker distribution is correctly specified. We applied our proposed
method to a dataset that examined the association between the biomarker
Ki-67 and disease-free survival in breast cancer patients. We conducted
simulation studies to examine the performance of our method.

Key words: Biomarker; Cut-off value; Finite-mixture model; Meta-
analysis; Prognostic study
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1 Introduction

Prognostic studies have been conducted to determine whether specific biomark-

ers are associated with the prognosis of various diseases. Such studies have con-

tributed to the understanding of disease progression and to the identification

of subgroups of patients with poor/good prognoses and are expected to play

important roles in clinical decision making, healthcare policy and patient man-

agement (Hemingway et al., 2013). However, several authors have also raised

important issues regarding the conducting and reporting of prognostic studies

(Altman, 2001; Hemingway et al., 2010; McShane et al., 2005; Riley et al., 2003,

2013). For example, a fundamental problem with prognostic studies is that they

are often conducted with only a small sample size in a single or a few facili-

ties. Therefore, even if a single study identifies (potential) prognostic factors, it

is unclear whether the findings hold in general and thus findings in prognostic

studies should be further assessed. Meta-analysis is useful for this purpose (Riley

et al., 2013). Meta-analysis is a powerful tool for identifying sound evidence by

examining multiple independent studies and has been widely applied for evalu-

ations of treatment effects in clinical trials, and the findings of well-conducted

meta-analyses are regarded as highly reliable evidence (The American Society

of Clinical Oncology, 1997). However, applications of meta-analyses have been

very limited for prognostic studies. Recently, several meta-analyses of prognostic

studies have been conducted including the meta-analysis by de Azambuja et al.

(2007) for the antigen Ki-67 in early-stage breast cancer, Callagy et al. (2007) for

the protein BCL-2 in breast cancer, and Pak et al. (2014) and Na et al. (2014)

for FDG-PET in head and neck cancer and lung cancer, respectively.

In prognostic studies, an outcome measure such as a hazard ratio is often used

to distinguish patients who show high-expression of a biomarker and those who
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show low-expression. The definitions of high- and low-expressions depend on a

cut-off value for the biomarker. Although it has been pointed out that such a

categorization may be suboptimal from a statistical point of view (Altman, 2001),

this method is often used in the analyses of prognostic studies since it is easy for

non-statisticians to understand. However, the use of study-specific cut-off values

makes it difficult to conduct a meta-analysis of prognostic studies. The above-

mentioned meta-analyses of prognostic studies by de Azambuja et al. (2007),

Callagy et al. (2008), Pak et al (2014) and Na et al. (2014) applied standard

meta-analysis techniques but did not take into account for the problem that the

hazard ratio obtained in the prognostic study was calculated based on a study-

specific cut-off value, making it difficult or impossible to accurately interpret

the combined hazard ratio. This has been a pressing issue in meta-analyses of

prognostic studies of biomarkers (Hemingway et al.,2010; Riley et al.,2003) and

statistical methods have been less developed for the meta-analysis of prognostic

studies (Sutton and Higgins, 2008).

Recently, Riley et al. (2015) attempted to address this issue. They proposed

a multivariate meta-regression model, in which the study-specific cut-off value

was incorporated as study-level covariates. Their focus was on examining the

association between an outcome such as a hazard ratios and a cut-off value. Their

method can then be used to obtain confidence intervals and prediction intervals

for any given cut-off value. This is very useful for determining an appropriate

cut-off value for dividing subjects into two prognostic groups.

In this paper, we develop a method to obtain a summary statistic for multiple

hazard ratios in a literature-based meta-analysis, where literature-based means

a meta-analysis using the summary statistics reported in published studies. Our

focus is different from that of Riley et al. (2015); we summarize the published

hazard ratios independently of their cut-off values by estimating the underlying
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relationship of an individual subject between a biomarker and the outcome. A

fundamental difficulty in making this inference is that biomarkers for individual

subjects are not observable in literature-based meta-analysis. To overcome this

difficulty, we introduce an idea from methods for a meta-analysis evaluating the

exposure-response relationship based on the outcomes of grouped exposure re-

ported by Shi and Copas (2004) and Takahashi and Tango (2010). That is, we

assume that unobservable measurements of the biomarker follow a continuous

distribution. Its unknown parameters are estimated by the maximum likelihood

method based on the number of patients in the low-expression group, that in the

high-expression group and the cut-off value reported in each paper. With the

estimated distributions in hand, we propose a method for combining the results

of prognostic studies based on a fixed-effect model or a random-effect model.

In Section 2, we summarize the data reported by de Azambuja et al. (2007)

and their results of a meta-analysis of prognostic studies of Ki-67, and we prepare

the notations. In Section 3, we propose an inference procedure. For simplicity

of presentation, we begin by explaining our proposal under the assumption that

the distributions of the biomarker are common across studies (Subsection 3.1).

As suggested by the data of de Azambuja et al. (2007), however, distributions

may not be common across studies. We next apply a finite-mixture model for

modeling distributions of Ki-67 (Subsection 3.2). In Section 3.3, some extensions

are addressed. The data by de Azambuja et al. (2007) are re-analyzed using our

proposed method in Section 5. In Section 6, we present the results of simulation

studies to examine whether our proposed method works well in practice. Finally,

several remaining issues are discussed in Section 7.
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2 Motivating data and notations

The antigen Ki-67 is of great interest due to its role as a biomarker of proliferation

(Brown et al., 1996). In particular, Cheang et al. (2009) showed that Ki-67 was

useful to discriminate Luminal A and Luminal B, which were identified as breast

cancer subtypes by gene-expression profiling, and then Ki-67 has been employed

in the classification rule for the prognosis of breast cancer patients in the 2011 St.

Gallen International Expert Consensus Report (Goldhirsch et al. 2011). Ki-67

is measured as a proportion of positive cells in a tumor specimen and thus it

ranges from 0 to 1, or 0% to 100%. While de Azambuja et al. (2007) displayed

percentage, we present it as a proportion from 0 to 1 in this paper. De Azambuja

et al. (2007) conducted a meta-analysis of 45 prognostic studies of the significance

of Ki-67 in early-stage breast cancer. See their Table 2 for a list of the studies

included. They examined associations between the expression of Ki-67 and both

disease-free survival and overall survival. In the present paper, we will deal only

with disease-free survival. The data analyzed by de Azambuja et al. (2007)

consisted of the hazard ratios of the 45 studies with their confidence intervals,

along with the number of patients in the high-expression group, the number of

patients in the low-expression group and the cut-off value of each study. De

Azambuja et al. (2007) applied the standard meta-analysis techniques, including

a fixed-effect and a random-effect model. They reported combined hazard ratios

of 1.88 (95% confidence interval: 1.75, 2.02) by the fixed-effect model and 1.93

(1.74, 2.14) by the random-effect model, and concluded that Ki-67 positivity

appears to be associated with a higher risk of relapse in patients with early-

stage breast cancer. The cut-off values ranged from 0.035 to 0.32. However,

their combined hazard ratios were obtained by simply applying the standard

meta-analysis techniques without taking into account that the cut-off values were
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study-specific, and therefore were difficult to interpret.

Let us consider the cases of a literature-based meta-analysis of S prognostic

studies for a continuous biomarker. Let X
(s)
i be a measurement of a biomarker

of the i-th patient of the s-th study. We assume that the range of the biomarker

is [0,κ], where κ is a fixed constant. Here, we allow κ to be infinity and then

[0,κ] is regarded as [0, ∞). As explained, Ki-67 has the range of [0,1], and

there are many other biomarkers with the range [0,1], including BCL2 protein

and p53 (Callagy et al., 2007). Biomarkers of an other range also have been

examined in prognostic studies: Pak et al. (2014) reported a meta-analysis of

Metabolic Tumor Volume (MTV) and Total Lesion Glycolysis (TLG) in head

and neck cancer. MTV and TLG can be regarded as ranging from 0 to infinity.

We suppose the following data available. For s = 1, . . . , S, let n
(s)
1 and n

(s)
0 be the

number of patients in the high-expression group and the number of patients in

the low-expression group, respectively. The number of total patients in the s-th

study is N (s) = n
(s)
1 +n

(s)
0 . The high-expression and the low-expression groups are

defined according to whether or not the measurement of the biomarker is equal to

or more than a study-specific cut-off value c(s). We will use the logarithm of the

hazard ratio of the high-expression group relative to the low-expression group of

the s-th study represented by y(s) and its standard error denoted by s(s). These

variables, including a cut-off value, are usually available in prognostic studies.

N (s) and c(s) are regarded as fixed. Although s(s) is estimated from data, it is

also regarded as fixed as is often done in meta-analysis studies (Normand, 1999).
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3 Inference procedure

3.1 Under a homogeneous distribution of a biomarker

We propose to summarize published hazard ratios by estimating the underlying

individual-level association between a biomarker and an outcome based on the

published hazard ratios. That is, we consider the following individual-level model

for the association between a biomarker and a time-to-event:

λ(t|X(s)
i ) = λ0(t) exp (β̃X

(s)
i ), (1)

where λ(t|X(s)
i ) is a conditional hazard function given X

(s)
i , β̃ is a regression co-

efficient, and λ0(t) is a baseline hazard function. We propose to make a summary

as β̃ in the individual-level model (1), which is a 1-unit change of the biomarker

value Xi. However, since the biomarker X
(s)
i is not observed in a literature-

based meta-analysis, it is very hard to estimate β̃. To make an inference on

the individual-level model (1), we assume that X
(s)
i follows a common contin-

uous distribution on [0,κ] across S studies. We consider a parametric class of

probability density functions for X
(s)
i . It is denoted by {f(x; θ); θ ∈ Θ}, where

θ is an unknown parameter and Θ is a parameter space. The cumulative dis-

tribution function for f(x; θ) is denoted by F (x; θ). Given that N (s), n
(s)
0 is

regarded as the realization of a binomial random variable with the probability of

”success”, P (0 ≤ X
(s)
i ≤ c(s)) = F (c(s); θ). Then, the log-likelihood function for

{n(s)
0 ; s = 1, . . . , S} is given by

logL =
S∑
s=1

[
n
(s)
0 log {F (c(s); θ)}+ n

(s)
1 log {1− F (c(s); θ)}

]
.

The parameter θ can be estimated by the maximum likelihood method (Shi and

Copas, 2004; Takahashi and Tango, 2010) and the maximum likelihood estimator

is denoted by θ̂. Although θ̂ is calculated from data, we regard it as fixed in order
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to construct our method. Define

d
(s)
0 = E(X

(s)
i | 0 ≤ X

(s)
i < c(s)) =

∫ c(s)
0 xf(x; θ̂)dx∫ c(s)
0 f(x; θ̂)dx

,

and

d
(s)
1 = E(X

(s)
i | c(s) ≤ X

(s)
i ≤ κ) =

∫ κ
c(s) f(x; θ̂)dx∫ κ
c(s) f(x; θ̂)dx

(2)

which are the expectations of the low-expression group and the high-expression

group, respectively. By regarding the hazard ratio of the s-th study as that for

the unit of d(s) = d
(s)
1 − d

(s)
0 , as a working model for Model (1), we introduce a

study-level model for the association between the log-hazard ratio and d(s). That

is,

y(s) = βd(s) + s(s)ε(s) (3)

is assumed, where β is an unknown parameter, and ε(s) is a zero-mean normal

random error with the variance V ar(ε(s)) = 1. This is a fixed-effect model.

The parameter β is interpreted as a log-hazard ratio for the unit change of d(s).

Dividing both sides of model (3) by d(s), one obtains

y(s)

d(s)
= β +

s(s)

d(s)
ε(s). (4)

This is the standard fixed-effect model of a one-way layout, which frequently arises

in meta-analyses of treatment effects in clinical trials. Thus one can estimate β

by using the weighted least squared method. That is,

β̂ =

∑S
s=1 d

(s)y(s)/{s(s)}2∑S
s=1{d(s)/s(s)}2

,

with V ar(β̂) = [
∑S
s=1{d(s)/s(s)}2]−1.

Note that y(s) = log λ(t|c(s) ≤ X
(s)
i ≤ κ) − log λ(t|0 ≤ X

(s)
i < c(s)). Then,

Model (3) does not agree with the individual-level model (1), which is a model

for log λ(t|X(s)
i ). Model (1) leads to

E[log {λ(t|X(s)
i )}|c(s) ≤ X

(s)
i ≤ κ]− E[log {λ(t|X(s)

i )}|0 ≤ X
(s)
i < c(s)] = β̃d(s). (5)
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Intuitively, y(s), an estimator of log λ(t|c(s) ≤ X
(s)
i ≤ κ)− log λ(t|0 ≤ X

(s)
i < c(s)),

approximates the left-hand side of (5) well, and thus we anticipate that β̂ can

be interpreted as an estimate of regression coefficient β̃ of the individual-level

model (1), although it does not hold strictly in general. We will examine in the

simulation study section whether β̂ in Model (3) works well as an estimator of β̃.

One can also consider a random-effect model,

y(s) = β(s)d(s) + s(s)ε(s), (6)

where β(s) is a random-effect following N(β, τ 2) independently of ε(s), and τ 2 is

a between-study variance. Model (6) is equivalent to

y(s)

d(s)
= β(s) +

s(s)

d(s)
ε(s). (7)

Assuming that s(s) and d(s) are fixed, this is the standard random-effect model

with a random-intercept, that is frequently seen in meta-analyses of treatment

effects in clinical trials. Based on expression (7), one can estimate unknown

parameters β and τ by the moment method (DerSimonian and Laird, 1986) or the

restricted maximum likelihood (REML) method (Normand, 1999 among others).

For the REML method, in addition to software packages specialized for meta-

analyses, one can use standard softwares for the linear mixed-effect models such as

the MIXED Procedure in SAS (Normand, 1999). Instead of relying on expression

(7), one can create a SAS code that handle (6) directly with a slight modification

of the SAS codes given by van Houwelingen et al. (2002).

3.2 Under heterogeneous distributions of a biomarker among
studies

In the previous subsection, we introduced our proposed method under the as-

sumption that the distributions of the biomarker were common across studies

with a probability density function f(x; θ). However, this may be unrealistic in
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practice. In general, the reports of prognostic studies tend to provide the cut-off

values used along with their rationales. Among the 45 studies in the meta-analysis

by de Azambuja et al. (2007), 14 studies used the median value as the cut-off

value. The medians of these 14 studies ranged from 0.035 to 0.286, indicating

that the distributions of Ki-67 are unlikely to be common across studies. We

propose the use of a finite mixture model (McLachlan and Peel, 2000) to model

heterogeneity in the distribution of the biomarker among studies. Consider J

subpopulations of studies and suppose that each study belongs to one of the

subpopulations. Within each subpopulation, the distribution of the biomarker is

assumed to be common. The probability density function of the j-th subpopula-

tion is denoted by fj(x; θj), j = 1, 2, . . . , J , where fj(x; θj) is defined on [0, κ] and

θj is its unknown parameter. The cumulative distribution function corresponding

to fj(x; θj) is denoted by Fj(x; θj).

Let Z
(s)
j be an indicator function for membership in the j-th subpopulation.

That is, Z
(s)
j = 1 if the s-th study belongs to the j-th subpopulation and Z

(s)
j =

0 otherwise. If Z
(s)
j were observable, one could specify the distribution of the

biomarker. However, it is unknown. Regarding {Z(s)
j } as missing values, one can

employ the expectation-maximization (EM) algorithm for parameter estimation.

Let ξsj = P (Z
(s)
j = 1) and φ = (θ1, . . . , θJ , ξ1, . . . , ξJ). The complete-data log-

likelihood function is then

logLc =
S∑
s=1

J∑
j=1

Z
(s)
j

[
n
(s)
0 log {F (s)

j (c(s); θj)}+ n
(s)
1 log {1− F (s)

j (c(s); θj)}
]

+
S∑
s=1

J∑
j=1

Z
(s)
j log ξj.

McLachlan and Peer (2000) dealt with the EM algorithm for a mixture of gen-

eralized linear models. Although our model is not a generalized linear model,

one can estimate unknown parameters by using the EM algorithm. That is, we

iterate the following E-step and M-step until a conversion criterion is satisfied
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from an initial value φ[0]. Let the parameter at the k-th step be denoted by φ[k].

Expectation step (E-step): Calculate the expected value of the log-likelihood

function, with respect to the conditional distribution given n
(s)
0 and n

(s)
1 under

the current estimate of the parameter φ[k].

Eφ[k](logLc | n(s)
0 , n

(s)
1 ) =

S∑
s=1

J∑
j=1

Z̄
(s),[k]
j

[
n
(s)
0 log {F (s)

j (c(s); θj)}

+n
(s)
1 log {1− F (s)

j (c(s); θj)}
]

+
S∑
s=1

J∑
j=1

Z̄
(s),[k]
j log ξj,

where

Z̄
(s),[k]
j = Eφ[k](Z

(s)
j | n

(s)
0 , n

(s)
1 ) = Pφ[k](Z

(s)
j = 1 | n(s)

0 , n
(s)
1 ),

and Eφ[k] implies the (conditional) expectation with respect to a distribution of

the parameter φ[k].

Maximization step (M-step): Find the parameter that maximizes Eφ[k](logLc |

n
(s)
0 , n

(s)
1 ).

We define φ̂ by the convergence point of {φ[k]} in the EM algorithm. Then,

we assign each study to the population with the maximum posterior probabil-

ity P (Z
(s)
j | n(s)

0 , n
(s)
1 ). Then d(s) = d

(s)
1 − d

(s)
0 is calculated according to the

distribution of the assigned subpopulation. The fixed-effect model (3) and the

random-effect model (6) can be applied using an approach similar to that in

Subsection 3.1.

3.3 Extensions

Some extensions are addressed in this subsection. In practice, there are het-

erogeneity among studies. Here, we mention only extensions for the fixed-effect

model (3). Extensions for the random-effect model are straightforward. For ex-

ample, among 45 studies included in meta-analysis for Ki-67 data by de Azambuja
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et al. (2007), 22 and 15 studies employed anti-Ki-67 and anti-MIB-1 antibodies,

respectively. The other 8 studies employed other antibodies, or used both the

anti-Ki-67 and anti-MIB1 antibodies. For such a case, one may wish to evaluate

whether prognostic capacity of Ki-67 is dependent on antibodies. The following

meta-regression could be considered for this purpose:

y(s) = βd(s) + γTw(s) + s(s)ε(s),

where w(s) and γT are vectors of study-level covariates and unknown regression

coefficients. For example, by incorporating dummy variables for the use of an-

tibodies, it would be possible to evaluate and adjust for effects of antibodies in

the meta-analysis for Ki-67. Unknown parameters can be estimated by the ML

or REML methods by following the standard linear mixed effect model theory.

Another important extension is to relax the log-linear association in Model

(1). That is, when the linear association (1) between a biomarker and a log-

hazard ratio may not hold, one may consider a non-linear relationship. Suppose

we are interested in making an inference on the model,

λ(t|X(s)
i ) = λ0(t) exp (η̃Th(X

(s)
i )),

where h(x) = (h1(x), h2(x), ..., hq(x))T is a q-dimensional vector-valued known

function, hj(x), j = 1, 2, .., q is a scaler-valued known function and η̃ is a q-

dimensional vector of unknown regression coefficients. For example, one may

consider a model with q = 1 and h1(x) = log (1 + x). Or, one may consider more

complicated non-linear models using spline functions such as B-spline functions.

We then define

g
(s)
j0 = E(hj(X

(s)
i |0 ≤ X

(s)
i < c(c)),

g
(s)
j1 = E(hj(X

(s)
i |c(c) ≤ X

(s)
i ≤ κ),
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and g
(s)
j = g

(s)
j1 − g

(s)
j0 . Having determined the distribution of the biomarker

identified, one can calculate g
(s)
j using an approach similar that used for d(s). To

make an inference for η̃, we fit the model,

y(s) = ηTg(s) + s(s)ε(s),

where g(s) = (g
(s)
1 , g

(s)
2 , ..., g(s)q )T and η is a vector of regression coefficients. The

unknown parameter η can be estimated by the ML or REML methods. Or, by

divided by d(s), similarly to the models (3) and (6), one can utilize softwares

allowing the standard meta-regression.

4 Application

We re-analyze this dataset to illustrate our proposed method. See Section 2

for more details on the data by de Azambuja et al. (2007). As presented in

Figure 1 of Billgren et al. (2002), in early-stage breast cancer patients, Ki-

67 is likely to distribute around 0 and is unlikely to distribute close to 1. Let

f ∗(x; a, b) = baxa−1 exp (−bx)I{x > 0}/Γ(a), which is the probability density

function of the gamma distribution, where I(.) is the indicator function and

Γ(a) is the gamma function. Denote the corresponding cumulative distribution

function by F ∗(x; a, b). We introduce a distribution on [0,1] from the gamma

distribution by truncating at x = 1. That is, we define a probability density

function on [0,1] by f(x; a, b) = f ∗(x; a, b)I(0 ≤ x ≤ 1)/F ∗(1; a, b). This is called

the truncated gamma distribution (Johnson et al., 1994). We use the truncated

gamma distribution as a model of the distribution of Ki-67.

We consider a single truncated gamma distribution and a mixture of truncated

gamma distributions of two, three or four components. The EM-algorithm did

not converge in a mixture of four truncated gamma distributions. To select

the number of components, one may try to use the Akaike information criterion
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(AIC) (Akaike, 1973) based on the binomial likelihood. However, this is not

a good idea since our objective is to construct a good model to estimate the

conditional expectations d
(s)
0 and d

(s)
1 , whereas the AIC based on the binomial

likelihood measures the fitting of a model to cell frequencies of {(n(s)
0 , n

(s)
1 )}.

Indeed, as will be mentioned in the last paragraph of this section, the AIC did not

work well in this example. Instead, we utilized a sample mean of the biomarker.

Among the 45 studies, 7 studies reported a sample mean m(s) of Ki-67 across

the entire study population (rather than separate means for the high- and the

low-expression). A model-based estimate of the mean of Ki-67 is given by m̂(s) =

(d
(s)
0 × n

(s)
0 + d

(s)
1 × n

(s)
1 )/(n

(s)
0 + n

(s)
1 ). In Figure 1, scatter plots of m(s) and m̂(s)

based on a mixture of truncated gamma distributions are presented. The beta

distribution is representative as a distribution on [0,1]. It is very flexible and

is widely used in practice. For reference, we also applied the mixture of beta

distributions as the distribution of Ki-67. A scatter plot for the mixture of three

beta distributions is also presented in Figure 1. As shown in the figure, the

mixture of three truncated gamma distributions seems to fit best. Indeed, this

mixture had the minimum mean squared discrepancies between m̂(s) and m(s)

(MD), which is defined as MD =
∑S
s=1 ∆(s)

m (m̂(s) −m(s))2/
∑S
s=1 ∆(s)

m , where ∆(s)
m

is 1 if the sth study reports m(s) and is 0 otherwise. We therefore employed

a mixture of three truncated gamma distributions. Three, 17 and 25 studies

were classified into components 1, 2 and 3, respectively. Figure 2 presents three

estimated distributions in the mixture. With the mixture of three truncated

gamma distributions, we applied the fixed-effect model (3) and the random-effect

model (6). The regression coefficient β was estimated as 1.38 (standard error:

0.08) and 1.48 (1.23) for the fixed- and the random-effect models, respectively.

The hazard ratio for 0.2 units of d(s) is given by exp(β/5). Then the hazard ratios

for 0.2 units of X
(s)
i was estimated as 1.32 (95% confidence interval: 1.28, 1.36)
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and 1.34 (1.28, 1.41) with the fixed- and the random-effect models, respectively,

as given in Table 1, in which for reference, estimates with other distributions of

Ki-67 are also presented.

It is very important in a meta-analysis to determine whether between-study

heterogeneity exists. From expression (7) above, one can assess between-study

heterogeneity by using a forest plot, Cochran’s Q-test or the I2-index (Viecht-

bauer, 2010) based on y(s)/d(s). The forest plot given in Figure 3, which was

created by the metafor package in R (Viechtbauer, 2010), indicates heterogene-

ity among the studies. The p-value of the likelihood ratio test was 0.002 and

the I2-index was 43.02%, indicating that between-study heterogeneity cannot be

ignored. The estimate by the random-effect model is thus more appealing.

In Figure 4, we present hazard ratios relative to baseline over Ki-67 according

to Model (1). To assess the appropriateness of the linear relationship between

the log-hazard and d(s), we conducted residual analysis for Model (1). By using

the best linear unbiased predictor for the random-effect (Laird and Ware 1982),

we predict the residual εi. The predicted residual is denoted by ε̂i. In Figure

5A, we give a plot of ε̂is over d(s) and an estimated mean profile over d(s) by

Gaussian kernel smoothing. In Figure 5B, plots of the sample quantile and the

quantile based on the standard normal distribution for ε̂i are presented. These

figures indicate that the estimated mean profile has a tendency to decrease slightly

as d(s) increases, but there seems no substantial systematic departure from the

linearity and thus that Model (1) fit well.

[Insert Figures 1,2,3,4 and 5 around here.]

[Insert Table 1 around here.]

It is also important to evaluate whether or not estimates may suffer from

small study effects including publication bias (Sterne et al. 2011 among others).
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One can assess and adjust for small study effects by applying techniques such as

Egger’s regression test (Egger et al., 1997), the funnel plot (Light and Pillemer,

1984) and the trim-and-fill method (Duval and Tweedie, 2000) to y(s)/d(s). Here,

Egger’s regression test provided a p-value of 0.002. Although Egger’s regression

may not keep its nominal level in some situations (Jin et al. 2015 and references

therein), this small p-value may suggest concerns to publication bias. In Figure

6, we present a funnel plot of the 45 studies, which was created by the metafor

package in R (Viechtbauer, 2010). The funnel plot seems to be highly asymmet-

ric, and thus some studies may not have been reported. To determine whether

publication bias strongly influenced our estimate of the hazard ratio, we applied

the trim-and-fill method. As shown in Figure 6, eight studies (represented by

open circles) were suggested not to be reported. The trim-and-fill estimate of

the hazard ratio for a 0.2 unit was 1.30 (1.24,1.38) for the random-effect model.

Recall that the unadjusted hazard ratio with the random-effect model was 1.32

(1.28, 1.41) and then influence of the publication bias was very small.

[Insert Figure 6 around here.]

We also fit an alternative non-linear model;

λ(t|X(s)
i ) = λ0(t) exp (η̃(s)(logX

(s)
i + 1)), (8)

where η̃(s) is a random-effect. To make an inference on Model (8), we followed

the method given in Section 3.3. In Figure 4, we present hazard ratios relative

to baseline over Ki-67 based on this model, and in Figures 5C and 5D, we show

results of residual analysis. They indicate that Model (8) seems to have slightly

better fit than Model (1). Figure 4 indicates that the profile of the hazrd ra-

tios relative to baseline was similar between Models (1) and (8). Except for the

linear model (3) and (6), estimated results can not be summarized using only
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a single quantity as shown in Table 1. Accordingly, graphical displays like Fig-

ure 4 are very important. In agreement with our results, de Azambuja et al.

(2007) observed a statistical significance in association between Ki-67 and the

progression-free-survival. However, their hazard ratios are hard to interpret since

they depend on the cut-off values of the studies included. The hazard-biomarker

relationship presented in Figure 4 can be interpreted more easily as the underly-

ing individual-level association between Ki-67 and the hazard, which is free from

the cut-off values.

We also tried to apply distributions other than a mixture of truncated gamma

distributions. We could not obtain convergence in the estimation of unknown

parameters when we applied a truncated log-normal distribution or mixtures of

two, three or four truncated log-normal distributions. We will close this section

with an interesting point concerning performance of the AIC, which we observed

while applying a mixture of beta-distributions. By the scatter plots given in

Figure 1, we concluded that a mixture of three truncated gamma distributions

are more suitable than that of three beta distribution. Figure 7 presents the

estimated distributions of the mixture of three beta distributions. They have a

peak at x = 1 and are far from the histogram given in Figure 1 of Billgren et al.

(2002). In our experience, the histogram given by Billgren et al. (2002) seems a

typical distribution of Ki-67. Indeed, measurements of Ki-67 obtained by the first

author of the present paper from 228 patients in Shin-Koga Hospital in Japan

had a distribution similar to that reported by Billgren et al. (2002) (data not

shown). The mixture of three beta distributions thus seems not to be relevant

to the estimation of d(s) since a peak around x = 1 causes an over-estimation

of d
(s)
1 . Indeed, the assigned d(s) values were very close to 1 in almost all of

the studies and are substantially different from those obtained with the mixture

of three truncated gamma distributions. As a result, the estimate of β by the
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mixture of three beta distributions is much smaller than that by the mixture of

three truncated gamma distributions as shown in Table 1. On the other hand,

we observed that the AIC for the mixture of three beta distributions was 7248,

which is smaller than the AIC of 7272 for the mixture of three truncated gamma

distributions. It suggests that the AIC may select a distribution inappropriate

to our end. Note that the AIC is defined based on the log-likelihood of the

binomial distribution instead of likelihood of (unobservable) {X(s)
i }. This mode

of defining AIC may be responsible for the observed poor performance of the AIC.

The largest cut-off value among the 45 studies was 0.32 and it is thus difficult to

determine the shape of the density function in a range from 0.32 to 1 based on

data grouped by a cut-off value.

[Insert Figure 7 around here.]

5 Simulation study

5.1 Setting

We conducted a simulation study to determine whether β̂ in model (3) works well

as an estimator of β̃, which is the parameter in the individual-level model (1). We

also examined whether our proposed estimator is sensitive to or robust against

specification of the distribution of the biomarker, and evaluated performance of

some criterion to identify the distribution of the biomarker.

Much as in the analysis by de Azambuja et al. (2007), we considered a meta-

analysis of 45 studies. Let T
(s)
i , C

(s)
i and X

(s)
i be a failure time, a censoring

time and an observation of a biomarker of interest of the i-th patient of the s-th

study, respectively. The number of patients of the s-th study n(s) was set as

the Ki-67 dataset reported by de Azambuja et al. (2007) for s = 1, . . . , S. We

assume that each study has a distribution of the biomarker, which is one of three
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truncated gamma distributions. That is, we generated {X(s)
i ; i = 1, . . . , n(s)} from

one of three gamma distributions, GMM(0.083, 4615), GMM(0.205, 394611) and

GMM(0.383, 592020), where GMM(a, b) denotes the gamma distribution with

the parameters of (a, b), truncated at 1. This dataset is denoted by GMM3.

These truncated gamma distributions are the same as those estimated in the

Application section. In addition, we generated {X(s)
i ; i = 1, . . . , n(s)} from a

mixture of three log-normal distributions LN(−0.96, 1.28), LN(−0.16, 1.77) and

LN(−2.50, 2.58) truncated at 1, where LN(u, v) is the log-normal distribution

with the mean u and the variance v of the log-transformed variable, and from a

mixture of three normal distributions N(−0.1, 0.2), N(0.15, 0.2) and N(0.3, 0.2)

truncated at 0 and 1. These datasets are denoted as LN3 and NRM3, respec-

tively. The failure time T
(s)
i was generated from a Cox proportional hazards

model,

λ(t|X(s)
i , b(s)) = 1× exp {(b(s) + log ρ)×X(s)

i /0.2}, (9)

where b(s) is a random-effect following a normal distribution of mean zero and

the variance 0.01, and the parameter ρ is the hazard ratio for a change of 0.2

of the biomarker. We set ρ as 1.35, 1.2 or 1. The censoring time C
(s)
i was

generated from an exponential distribution with a mean of 2. In each study,

T̃
(s)
i = min(T

(s)
i , C

(s)
i ) and ∆

(s)
i = I(T

(s)
i ≤ C

(s)
i ) are available, and based on

these data, a log-hazard ratio y(s) of the high-expression group relative to the

low-expression group is estimated by a Cox regression. In generating the datasets

GMM3, LN3 andNRM3, 27.0%, 24.7% and 28.0% of observations were censored

for ρ = 1.35, 27.2%, 27.7% and 30.0% for ρ = 1.2 and 33.3%, 33.3% and 33.3%

for ρ = 1, respectively. The high-expression and low-expression groups were

defined according to whether or not Ki-67 is less than a cut-off value, where the

cut-off value was set to be identical to that from the Ki-67 data reported by de
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Azambuja et al. (2007). We assume that (T̃
(s)
i ,∆

(s)
i ) is not available, but y(s)

with its standard error and the cut-off value are available.

5.2 Sensitivity of the proposed method to specification of
the number of components in the mixture model

In this subsection, we examine whether our method is sensitive to or robust

against the specification of the number of components in the mixture model. We

applied our proposed method to the dataset GMM3. For the assignment of d(s),

we applied a mixture of the gamma distributions truncated at 1 with the num-

ber of components 1, 2, . . . , 5. For the estimation of a combined hazard ratio, we

employed the random-effect model (6). We generated 1,000 meta-analyses and

empirically evaluated averages and mean-squared-errors (MSEs) for the hazard

ratio exp (β̃). Table 2 summarizes the results of the simulation study. With five

components, we did not obtain successful convergence of the EM-algorithm in al-

most all the realizations. The proposed method with the three correctly specified

components had about 2% bias for ρ = 1.35. When ρ = 1.2, bias was very small.

We observed that the biases and MSEs of the truncated gamma distributions

of incorrectly specified numbers of components were very similar to those of the

correctly specified mixture of the three truncated gamma distributions in this

simulation. We also evaluated empirical coverage probabilities for the two-sided

95% confidence intervals and power/size for the one-sided 2.5%-level test for the

null hypothesis ρ = 0 (HR=1) of no association between the biomarker and the

hazard ratio. Table 2 indicates that the empirical coverage probabilities could

be far from the nominal level of 95%. This may have been due to the discrep-

ancy between Models (1) and (3), which may introduces biases. Although in

practice the amount of bias would not be very serious, it may nonetheless cause

poor coverage probabilities with large sample size in particular when the hazard
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ratio is relatively large, in which case the discrepancy between the two model is

likely to be large. We observed that empirical sizes were close to the one-sided

nominal level of 2.5%. Thus, even though the coverage probabilities may be far

from the nominal level, the proposed method provides a valid test of the associ-

ation between the biomarker and the hazard ratio. We also applied our method

to LN3 with the mixture of the log-normal distribution for the biomarker; the

results are also shown in Table 2. We did not obtain successful convergence with

the mixture of the five components in almost all the realizations. With three

or four correctly-specified components, only about 3% bias exists for ρ = 1.35

and only negligible bias exists for ρ = 1.2. With two components, a larger bias

exists. These results indicate that when the true hazard ratio is rather large, the

proposed estimator has a small bias as an estimator of the parameter β̃ for the

individual-level model (1), and when the true hazard ratio is rather small, it has

only a negligible bias. Furthermore, specifying a smaller number of components

may lead to biased estimates. We also conducted a simulation study for a fixed-

effect model; we generated failure times from model (9) without b(s) and applied a

fixed-effect model (3). The results were very similar to those of the random-effect

model and are not shown here.

[Insert Table 2 around here.]

5.3 Sensitivity of the proposed method to the specifica-
tion of the biomarker distributions in the mixture
model

We next examined whether our proposed method is sensitive to the specification

of distributions in the mixture model. To the datasets described above, we ap-
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plied mixture models of the same number of components as the true distribution,

but with possibly misspecified distributions: a mixture of three gamma distribu-

tions, that of three log-normal distributions and that of three beta-distributions.

The results are presented in Table 3. When the distribution is correctly specified,

our method has only negligible biases, and when misspecified, it may have con-

siderable biases and larger MSEs. Table 3 also provides the results when the true

distribution of the biomarker is a mixture of three normal distributions. In this

case, both of the fitted models are misspecified, and lead to a biased estimation.

[Insert Table 3 around here.]

5.4 Performance of criteria for selecting the biomarker
distribution

Finally, we evaluated the performance of two criteria to select the distribution

of the biomarker. One was AIC based on the binomial distribution and the

other is the mean squared discrepancies (MD) criterion, which was used in the

Application section. As shown in the Application section, m(s) may only be

observed in part of studies. We considered three situations, in which 30, 15,

and 7 studies provide m(s), respectively, and these cases are denoted by MD30,

MD15 and MD7, respectively. For each criterion, we counted the number of

realizations for which each model had the minimum value of the criterion and

show them in Tables 2 and 3. Table 2 indicates that for the mixture of the

truncated gamma distributions, both AIC and MD protected to select a model

of less components than the true one, which may cause biased estimation. We

observed that AIC was likely to select right number of components, and MD was

likely to overestimate the n umber of components. This property of MD, however,
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seems not to be so problematic in practice since, as seen in Table 2, the models of

four components (overestimated number of components) were not likely to lead

biased estimation. Table 2 also indicate that the performance of MD is better

with more studies reporting m(s). For a mixture of the log-normal distributions,

similar tendency was observed. In Table 3, comparisons of performance of AIC

and MD to select a distributional form in the finite mixture model were presented.

When the true biomarker distribution is a mixture of three truncated Gamma

distributions, AIC often selected a mixture of beta distributions incorrectly, which

was observed in the Application section. On the other hand, MD can select a

mixture of the truncated Gamma distributions more frequently and can protect

to select a mixture of beta distributions. When the true biomarker distribution

is a mixture of the truncated log-normal distributions, both AIC and MD select

the right distributions frequently and MD outperformed AIC.

6 Discussion

We proposed a method for a meta-analysis of prognostic studies of a biomarker.

The guide in Figure 8 summarizes the important steps of our proposed method.

Our estimator can be interpreted as a hazard ratio per the difference of expec-

tation of the biomarker between the high- and the low- expression groups. Our

simulation study found that the estimator exp (β̂) does not have considerable

biases as an estimator of the hazard ratio for the individual-level model (1), pro-

vided that the distribution of the biomarker is correctly specified, although these

two quantities do not agree mathematically. Thus, our method is useful to es-

timate the individual-level parameters from a literature-based meta-analysis of

prognostic studies, and is more appealing than simply combining hazard ratios

with a study-specific cut-off value as done by de Azambuja et al. (2007). Re-

cently, Hamingway et al. (2010) reported a meta-analysis of prognostic studies
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for C-reactive protein in stable coronary artery disease. They adjusted observed

log-hazard ratios with study-specific cut-off values by using a scaling factor given

based on log-normal distributions. Their scaling factor was calculated based on

the sample mean and standard deviation or the sample median and upper and

lower percentiles of the biomarker for each study. However, in general such in-

formation is not reported in prognostic studies. We observed that among 45

studies enrolled in the meta-analysis by de Azambuja et al. (2007), only 6 stud-

ies reported this information, and thus the method by Hemingway et al. (2010)

could not be applied. Similar to Hemingway et al. (2010), we assume a para-

metric model for the biomarker. To account for heterogeneity of distributions

among studies, we introduced a finite-mixture model of the truncated gamma

distributions (or the truncated log-normal distributions). However, a more flex-

ible models may be needed in some cases. If so, a mixture of distributions of

different forms could be considered such as a mixture of the truncated gamma

and log-normal distributions, or some random-effect models, where heterogeneity

is modeled with random-effects. One limitation in our method is that we assume

that d(s) is fixed (without error), although it is estimated with data. It is valuable

to develop methods accounting for uncertainty in estimation of d(s).

Through our real data analysis and simulation study, we observed that the

EM-algorithm for inference of the biomarker distribution may fail to converge.

This is one limitation of our method. We applied an algorithm similar to that for

the finite-mixture model of the generalized linear model discussed in McLachlan

and Peer (2000). Our model has a much complicated link-function than those

handled by McLachlan and Peer(2000) and this may cause non-convergence of

the EM-algorithm. More research are warranted to improve numerical stability

in making an inference on the biomarker distribution.

Prognostic studies are often analyzed based on two group comparison. Some
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prognostic studies may report comparison of more than 2 groups. For example,

Pinder et al. (1995) classified subjects into three groups with two cut-off val-

ues of 0.17 and 0.34, and showed the Kaplan-Meier curves of overall survival.

Although Pinder et al. (1995) did not provide hazard ratios of the middle or

the high-expression groups relative to the low-expression group, these values can

be extracted from Kaplan-Meier plots by means of Parmar et al. (1998). The

method to calculate the group-specific mean of the biomarker d
(s)
0 and d

(s)
1 can

be extended to the case of more than 2 groups by the method of Shi and Copas

(2004). One may consider a model y
(s)
k = β(d

(s)
k −d

(s)
0 )+s(s)ε(s), which is a natural

extension of Model (3), where y
(s)
k is the log-hazard ratio of the kth group relative

to the lowest expression group and d
(s)
k is an estimated mean of the biomarker

for the kth group. Since the data of the lowest expression group are shared by

y
(s)
k s, within-study correlations among y

(s)
k s are required to make an inference on

this model, and it would be hard to estimate the correlation among log-hazard

ratios within a study. Furthermore, in practice, some prognostic studies may not

report cut-off values. Our method can not incorporate such studies, and further

researches are warranted to address these important issues.

For Models (3) and (6), we applied the funnel plot and the trim-and-fill

method to y(s)/d(s) to detect and adjust for the influence of publication bias.

It remains unclear how such intuitive applications of the funnel plot and the

trim-and-fill method work in meta-analysis of prognostic studies. When the un-

derlying relationship between the log-hazard ratio and the biomarker is far from

linear, some non-linear modeling should be considered. As given in Subsection

3.3, our inference procedure can be easily extended to the non-linear functional

form of d(s). It is unclear how to apply the funnel plot and the trim-and-fill

method if the non-linear model has two or more regressors. It is important to de-

velop methods for handling publication bias appropriately for the meta-analysis
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of prognostic studies, since publication bias could greatly influence the estimation

in a meta-analysis of prognostic studies as it does in meta-analyses for treatment

effects in clinical trials or indeed could have an even more pronounced impact on

estimation.

We applied the maximum likelihood method for the grouped data proposed

by Shi and Copas (2004) and Takahashi and Tango (2010). This method assumes

a parametric family of unobservable measurements of a biomarker. As shown by

the simulation studies, our estimator may be sensitive to the specification of the

number of components and that of the distributions in the mixture model of the

biomarker. However, as observed in the Application and Simulation sections,

selecting the distributions of a biomarker by simply relying on the AIC may not

be relevant. As demonstrated in the Application section, a sample mean of the

biomarker over an entire study population may be reported in some studies. As

indicated in our simulation study, even if the number of studies that provide a

sample mean is limited, contrasting the sample mean with model-based coun-

terpart may be very useful for identifying the distribution of the biomarker. As

observed in our simulation study, the MD is improved with more studies report-

ing the overall mean m(s). On the other hand, one concern is that if reporting

process of m(s) is subject to some selection bias, the MD criteria may not work

well. Therefore, it is encouraged for authors of a prognostic study to report the

overall mean of the biomarker. External information or indevidual pateint data

(IPD) at hand may be useful to identify the distribution of the biomarker even if

IPD are available only for one study or is out of enrolled studies. Furthermore, if

the means of the low- and the high-expression groups are reported, one can use

them for d
(0)
0 and d

(s)
1 and then can avoid uncertainty in modeling the biomarker

distributions. Thus, authors of a prognostic studies are encouraged to report

group-specific means of the low- and the high-expression groups.
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Conducting an individual patient data (IPD) meta-analysis is a promising

solution to the cut-off value issue (Altman, 2001; Riley et al., 2003; Riley et

al., 2013; Sutton and Higgins, 2008). However, it is difficult to obtain all IPD

for prognostic studies, since no study registration system such as the Cochran

Library for clinical trials is available for prognostic studies. Literature-based

meta-analyses are thus also important for prognostic studies. In addition, even if

the IPD can be collected, doing so can be overly time-consuming and very costly

(Abo-Zaid et al., 2012; Altman et al., 2006). It is thus important to use great

care when designing an IPD meta-analysis. The results of a literature-based meta-

analysis may provide helpful information when planning an IPD meta-analysis

of prognostic studies. Statistical methods for mixed IPD and aggregated data

meta-analysis have been developed for treatment effects in clinical trials (Riley et

al., 2008a) and for diagnostic studies (Riley et al., 2008b). Developing methods

for a mixed IPD and aggregated data meta-analysis is a particularly attractive

approach for prognostic studies since IPD are useful in the identification of the

distribution of a biomarker. Some papers on prognostic studies may report a

hazard ratio for a 1-unit change of the biomaker. Na et al. (2008) reported the

hazard ratio for a 1-unit change of SUV for non-small cell lung cancer. However,

it is excluded in the meta-analysis by Paesmans et al. (2010) since almost all

the papers relied on the hazard ratio for the high-/low-expression groups. One

potential approach to this issue is to combine the estimated hazard ratio obtained

by our method for studies relying on cut-off values and hazard ratios for a 1-unit

change reported in literatures or those derived from IPD by means of the standard

meta-analysis techniques. It is valuable to examine whether this or other related

methods work well in practice.

28



Acknowledgment

The second author’s research was partly supported by grant from the Kurume

University Millennium Box Foundation for the Promotion of Science and by a

Grant-in-Aid (C) from the Ministry of Education, Science, Sports and Technology

of Japan (#21500286). All the authors thank the Associate Editor and two

reviewers for their insightful comments. They also thank Professor Richard Riley

for providing us a copy of their paper even while it was in press.

References

Abo-Zaid, G., Sauerbrei, W., and Riley, R. D. (2012). Individual participant

data meta-analysis of prognostic factor studies: state of the art? BMC

Medical Research Methodology 12, 56.

Akaike, H. (1973). Information theory and an extension of the maximum like-

lihood princile. 2nd Inter. Symp. on Information Theory (Petrov, B. N.

and Csaki, F., eds.), Budapest, Akademiai Kiado, 267–281. (Reproduced in

Breakthroughs in Statistics, 1 (Kotz, S. and Johnson, N. L. eds.), Springer-

Verlag, New York (1992) 610–624.

Altman, D. G. (2001). Systematic reviews of evaluations of prognostic variables.

British Medical Journal 323, 224–228.

Altman, D. G., Trivella, M., Pezzella, F., Harris, A., and Pastorino, U. (2006).

Systematic review of multiple studies of prognosis: the feasitility of obtain-

ing individual patient data. Advances in Statistical Methods for the Health

Sciences, Boston, Birkhäuser, 3–18.
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Figure 1: Scatter plots of observed means of Ki-67 and empirical ones with (A)
a truncated gamma distribution, a mixture of (B) two and (C) three truncated
gamma distributions, and (D) that of three beta distributions.The broken lines
indicate perfect fit (y=x).
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ture of truncated gamma distributions.

40



Fixed−effect model
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Figure 3: A forest plot for assessing heterogeneity of β applied to
exp (0.2× y(s)/d(s)), which is a hazard ratio for 0.2 unit change based on Model
(6)
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Figure 4: Hazard ratios relative to baseline over Ki-67 estimated according to
Model (1) (solid curve) and Model (8) (broken curve) with a mixture of three
truncated gamma distributions.
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Figure 5: Rediduals ε̂
(s)
i over d(s) with a Gaussian kernel smoother (A for Model

(1), C for Model (8)) and normal quantile-quantile plots for ε̂(s) (B for Model
(1), D for Model (8)).
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Figure 6: A funnel plot for assessing of publication bias applied to
exp (0.2× y(s)/d(s)), which is a hazard ratio for 0.2 unit change based on Model
(6): open circles present imputed studies by the trim-and-fill method.
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Figure 7: Estimated probability density functions of three components in the mix-
ture of beta distributions.
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Step 1:  Conduct a literature search by using PubMed or other databases. 
 
Step2: Obtain information required for estimation. 
• Log-hazard ratio and its standard error. 
• Cut-off value and the number of the high and the low expression groups. 
 
Step3: Obtain information useful in identifying the biomarker distribution. 
• Observed mean biomarker value of each study 
• Reason why the cut-off value is defined (median, mean, … etc.) 
 
Step4: Assume a parametric distribution for the biomarker and estimate unknown 
parameters with the maximum likelihood method for the binomial distribution. 
 
Step5: Select the best parametric model for the distribution in Step4 by evaluating 
discrepancies between predicted (by step 4) and observed (by step 3) mean biomarker 
values possibly in support of some external information on the distribution.  
 
Step6: Apply standard fixed or random effects meta-analysis techniques to make 
inference on the model (3) or (6) using software of your choice, and summary by 
drawing a graph like Figure 4. 

Figure 8: Step-by-step guide for our proposed method.
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