Effects of lidocaine on torn rotator cuff tendons 1

 $\mathbf{2}$

19

3	Hirokazu Honda ¹⁾ , Masafumi Gotoh ²⁾ , Tomonoshin Kanazawa ^{1),3)} , Hidehiro Nakamura ¹⁾ ,
4	Keisuke Ohta ³⁾ , Kei-ichiro Nakamura ³⁾ , Naoto Shiba ¹⁾
5	1) Department of Orthopedic Surgery, Kurume University, Fukuoka, Japan
6	2) Department of Orthopedic Surgery, Kurume University Medical Center, Fukuoka, Japan
7	3) Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume
8	University school of Medicine, Fukuoka, Japan
9	
10	Running title: Lidocaine affects rotator cuff tears
11	Correspondence to: Masafumi Gotoh, MD, PhD,
13	Department of Orthopedic Surgery, Kurume University Medical Center
14	155 Kokubu-machi, Kurume, Fukuoka 839-0863, Japan
15	Tel.: +81-942-22-6111 ex. 533; Fax: +81-942-22-6657
16	E-mail: gomasa@med.kurume-u.ac.jp
17	Author Contributions:
18	HH: Planned the study design, performed and analyzed histological data, and wrote the

manuscript

MG: Supervised the study design, analyzed data, and wrote the manuscript 20

21	TK, HN, KO, KN, NS: Supervised the study design and analyzed data
22	All authors have read and approved the final submitted manuscript.
23	The authors declare no conflicts of interest for this study.
24	
25	
26	ABSTRACT
27	We determined lidocaine's action on torn rotator cuff tendons in vitro and in vivo. For in vitro
28	experiments, cell proliferation and viability assays were performed using tenocytes derived from
29	human torn rotator cuff tendons. For in vivo experiments, acute rotator cuff tears were made on
30	the supraspinatus tendons in the rats' bilateral shoulders; before closure, lidocaine was injected
31	into the shoulder and saline into the contralateral shoulder (control). After sacrifice, the
32	specimens underwent biomechanical testing or histological analysis at 24 h and at 2, 4, and 8
33	weeks after surgery. The extent of collagen organization and apoptosis were semi-quantitatively
34	evaluated using collagen picrosirius red staining. Apoptosis was examined using TUNEL
35	staining and electron microscopy. Cell proliferation decreased dose-dependently. After exposure
36	to 0.1% lidocaine for 24 h, cell viability decreased. Two and 4 weeks after surgery, the ultimate
37	load to failure decreased more in the lidocaine group than in the control group, with significantly
38	reduced stiffness in the lidocaine group 2 weeks after surgery. Collagen organization 2

39	significantly decreased in the lidocaine group by 4 weeks after surgery but returned to baseline at
40	8 weeks. TUNEL staining detected numerous apoptotic tenocytes at the torn tendon edge
41	exposed to lidocaine 24 h after surgery; electron microscopy confirmed the condensed cell
42	nuclei. These changes were not observed in controls. Lidocaine caused cytotoxicity to tenocytes
43	under both conditions, decreased biomechanical properties, and induced apoptosis and delay of
44	collagen organization in this model. Subacromial lidocaine injections in patients with rotator cuff
45	tears should be performed carefully.

Keywords: lidocaine, rotator cuff, tendons, tenocytes

48 Introduction

49	Local anesthetics are clinically used for the treatment of tendinopathies. Peritendinous
50	injections of local anesthetics, in combination with other drugs (e.g., steroids), are given around
51	various joints to treat lateral and medial epicondylitis of the elbow, de Quervain's disease,
52	patellar and pes anserine tendinopathies, and Achilles tendinopathy [1-6]. Similarly, subacromial
53	injections of anesthetic agents are used in rotator cuff tears as therapeutic and diagnostic tools
54	[7].
55	However, in vitro studies have shown the toxicity of local anesthetics on tendon
56	fibroblasts [8-11]. Lehner et al. reported that the treatment of rat tendon-derived cells with 0.5%
57	bupivacaine for 10 min had detrimental effects on cell viability [8]. Piper et al. showed a toxic
58	effect of 30 min of 1% lidocaine treatment on bovine tendon fibroblasts [9]. Yang et al.
59	concluded that lidocaine potentiated the deleterious effects of triamcinolone acetonide on
60	cultured tenocytes derived from rat-patellar tendons [10]. Recently, Sung et al. compared the
61	cytotoxic effects of ropivacaine, bupivacaine, and lidocaine on human rotator cuff tendon
62	fibroblasts and showed high cytotoxicity of lidocaine compared with the other agents, even in
63	low concentration [11].
64	Despite the deleterious effects of the local anesthetics as evaluated by in vitro studies [8-
65	11], lidocaine is frequently used preoperatively in clinical practice in rotator cuff tears [12-15];

66	however, <i>in vivo</i> data on the effects of lidocaine are lacking. These results prompted us to
67	examine how lidocaine acts on rotator cuff tears when used in subacromial injection for this
68	disease. Thus, the purpose of the present study was to evaluate the effects of lidocaine on
69	cultured tenocytes from human rotator cuff tendons in an animal cuff tear model. We
70	hypothesized that lidocaine has deleterious effects on tenocytes in vitro and in vivo.
71	
72	Methods
73	Lidocaine was purchased from Maruishi (1% lidocaine injection; Osaka, Japan).
74	Dulbecco's modified Eagle's medium (DMEM) and L-glutamine were purchased from Nissui
75	Seiyaku (Tokyo, Japan), and fetal bovine serum (FBS) was purchased from Thermo Scientific
76	(Tokyo, Japan).
77	
78	Study Design
79	All applicable international, national, and our institutional guidelines for the care and
80	use of animals and Ethics Committee were followed. Informed consent was obtained from all
81	individual participants included in the study. All tests and measurements were performed blindly.
82	
83	For the <i>in vitro</i> experiments, the tenocytes obtained from torn human rotator cuff
	0

84	tendons were cultured in monolayers at various concentrations of lidocaine (0.001%, 0.01%,
85	0.05%, and 0.1%); 9 specimens were used in the cell-proliferation assay, and 5 specimens were
86	used in the cell-viability assay. A singlicate analysis was performed to collect experiment data.
87	For the cell-proliferation assay, cultured cells from a specimen were divided into 5
88	groups and exposed to 5 graded concentrations of lidocaine (control, 0.001%, 0.01%, 0.05%, and
89	0.1%). Therefore, 9 data points were obtained in total. For the cell-viability assay, cultured cells
90	from a specimen were divided into 2 groups and exposed to either 0% or 1% lidocaine.
91	Therefore, 5 data points were obtained in total.
92	For the <i>in vivo</i> experiments, adult Sprague–Dawley rats $(n = 33)$ underwent bilateral
93	shoulder surgery, and a total of 66 shoulders were assessed. The shoulders were allocated into 2
94	groups: lidocaine and control. Each group consisted of 6 specimens for biomechanical testing
95	and 3 for histological analysis and was evaluated 2, 4, and 8 weeks after surgery. Six specimens
96	in each group were subjected to 3 TUNEL staining and 3 electron microscopy analyses 24 h after
97	surgery (Figure 1).
98	
99	Tissue preparation
100	Fourteen patients (9 males, 5 females) with rotator cuff disease were included in this
101	study. Nine subjects had right shoulder involvement, and 5 subjects had left shoulder 6

102	involvement. There were 2 small, 5 middle, 3 large, and 4 massive tears. Average subject age
103	was 62.4 ± 9.6 years, and the average period from symptom onset was 69.7 ± 73.8 weeks. All the
104	patients had received subacromial injections of a steroid or hyaluronic acid in addition to
105	physical therapy. Arthroscopic cuff repair was performed for a minimum of 2 months after the
106	last subacromial injection to minimize any potential effects of the agents.
107	The specimensSpecimens of the rotator cuff tendon were 3–5 mm in width and were
108	obtained from the margins of human rotator cuff tendons. The biopsy was performed in the
109	supraspinatus tendon and partly in the infraspinatus tendon when the tear size was large or
110	massive. Care was taken not to contaminate other types of adjacent tissue (muscle or synovium).
111	The cuff tear was completely repaired without excessive tension at the sides.
112	
113	Tenocytes Culture
114	Torn human rotator cuff tendons were obtained from 14 patients during surgery, and
115	explant cultures were performed to isolate tenocytes. The tissues were rinsed twice in phosphate-
116	buffered saline (PBS) and cut into small pieces, and the tenocytes were maintained in culture
117	medium consisting of high-glucose DMEM (Nissui, Tokyo, Japan), 10% FBS (Thermo
118	Scientific, Utah, USA), and 1% penicillin/streptomycin (Nacalai Tesque, Kyoto, Japan) in an
119	incubator at 37°C with 5% CO ₂ . The culture medium was changed twice a week. The tenocytes

120 from the second passage were used for the experiments.

121

122 Cell Proliferation Assay

123	Cultured human tenocytes were seeded onto 96-well plates at a density of 5,000
124	cells/well and incubated with DMEM containing 10% FBS for 24 h. The tenocytes were treated
125	with lidocaine (Maruishi, Osaka, Japan) at various concentrations (0.001%, 0.01%, 0.05%, and
126	0.1%) for the next 24 h. After a 3-h reaction with WST-8 cell count reagent (Nacalai Tesque), the
127	fluorescence intensity of each well was measured using a microplate reader (BIO-RAD Model
128	550; Bio-Rad Laboratories, Richmond, CA, USA) at a wavelength of 450 nm.
129	
130	Cell Viability Assay
131	Cultured human tenocytes were seeded onto 6-well plates at a density of 1.5×10^5
132	cells/well and incubated with DMEM containing 10% FBS for 24 h. The cells were exposed to
133	0.1% lidocaine or only to medium (controls) for the next 24 h. Floating cells and trypsinized
134	adherent cells were combined and diluted to 1×10^6 cells/ml with 1X PBS. The components of a
135	LIVE/DEAD Cell Viability Assay Kit (Invitrogen, OR, USA), C12-Resazurin, and SYTOX
136	GREEN were applied to stain viable and dead cells. After incubation for 15 min at 37°C, the
137	numbers of viable and dead cells were obtained by using a FACS instrument (BD Bioscience, 8

138 USA).

139

140

141 Rotator Cuff Tear Model in Rats

142	Thirty-three adult Sprague–Dawley male rats (mean body weight, 487.4 ± 93.2 g) were
143	used according to the guidelines of the Institutional Animal Care and Use Committee. Animals
144	were anesthetized with isoflurane under a high flow rate of oxygen. A middle skin incision was
145	made and subcutaneous tissue was divided. After the deltoid was divided to expose the
146	subacromial space, a complete tear was made on the supraspinatus (SSp) tendon with a #11
147	scalpel blade. The supraspinatus tendon was totally resected with preservation of its cartilaginous
148	portion and adjacent tendons (the infraspinatus and subscapularis tendons). Then, the
149	myotendinous unit was immediately retracted (Figures 2a, b). Before skin closure, 0.1 μ l (1%
150	lidocaine)/body weight (g), dose used in the rat is equal to 0.1 ml/1% lidocaine/body weight (kg)
151	in humans, was injected onto the tendon around the deficit site, and PBS was injected onto the
152	contralateral shoulder as a control. The animals were allowed to move freely in their cages after
153	surgery.

154

155 Biomechanical Testing

156	All specimens were immediately tested after sacrifice. Soft tissues were removed except
157	for the SSp tendon-humerus complex. Each specimen was then placed into a uniaxial testing
158	machine (TENSILON RTE-1210; Orientec, USA). The SSp tendon was secured in a screw grip
159	by using sandpaper and ethyl cyanoacrylate, and the humerus was secured in a custom-designed
160	pod by using a capping compound. The SSp tendon-humerus complex was positioned to allow
161	the tensile loading in the longitudinal direction of the injured site for the SSp tendon (Figure 2b).
162	The specimens were preloaded at 0.1 N for 5 min, followed by 5 cycles of loading and unloading
163	with 0.5 N at a cross-head speed of 5 mm/min and then loaded until failure at 1 mm/min. The
164	ultimate load to failure and linear stiffness were calculated from the resulting load-elongation
165	curve. This testing protocol was similar to that described previously [16, 17].
166	
167	Hematoxylin and Eosin (HE), Picrosirius Red, and Terminal Deoxynucleotidyl Transferase
168	dUTP-mediated Nick End-labeling (TUNEL) Staining
169	The SSp tendon-humerus complex was fixed in 10% buffered formalin and then
170	decalcified with formic acid solution. Tissues were processed for paraffin embedding.
171	Longitudinal sections of 5- μ m thickness of the SSp tendon–bone complex were placed on the
172	glass slides and stained with either HE or picrosirius red. The specimens were visualized under a
173	light and polarized light microscope (OLYMPUS BX50; OLYMPUS. Tokyo Japan), and 10

photomicrographs were obtained using an Olympus DP71 digital camera (Olympus).

175

176	Picrosirius red staining was used for the evaluations of the collagen organization [17-
177	20]. For the semi-quantitative analysis, 2 of 3 glass slides were randomly selected from each
178	group, and photomicrographs were taken at 100× magnification. Consequently, a total of 36
179	photomicrographs were digitized (8-bit) using ImageJ software at a resolution of 1360×1024
180	pixels. In each photomicrograph, 10 randomly selected areas (50 $\mu m \times 50 \ \mu m)$ were evaluated by
181	measuring the degree of gray scale on the area, yielding an image in which non-collagenous
182	tissue was dark, and collagen was depicted on the gray scale of 1–255. Finally, the average
183	values of 10 areas in each specimen were calculated; higher values indicated more organized
184	collagen. This testing protocol was similar to that described previously [19, 20].
185	To evaluate apoptosis at the torn site, tendon specimens were subjected to TUNEL
186	staining 24 h after surgery using an <i>in situ</i> cell death kit (WAKO Chemical, Japan) according to
187	the manufacturer's instructions. DNase-digested sections served as a positive control, and TdT
188	(-) sections served as a negative control.
189	

190 Ultrastructure Analysis by Low-Voltage Scanning Electron Microscopy (LV-SEM)

191 Tenocyte morphology was analyzed 24 h after surgery using wide-range observation of
192 the flat block face by LV-SEM.

193	Sprague–Dawley rats were deeply anesthetized, transcardially perfused through the left
194	ventricle with heparin-containing saline, and subsequently fixed with half Karnovsky's solution
195	(2% paraformaldehyde, 2.5% glutaraldehyde, and 2 mM CaCl ₂ in 0.1 M cacodylate buffer). After
196	perfusion, the SSp tendon-humerus complex was harvested and immersed in the same fixative
197	for 2 h at 4°C. After decalcification with Kalkitox solution (WAKO Chemical), the specimens
198	were cut into small cubes and fixed with ferrocyanate and 1% OsO4, treated with 1%
199	thiocarbohydrazide, and then immersed in 1% OsO4. For en bloc staining, the specimens were
200	immersed overnight in a solution of 4% uranyl acetate and washed with distilled water. Next, the
201	specimens were stained with Walton's lead aspartate solution, dehydrated with a graded ethanol
202	series, infiltrated with an epoxy resin mixture, and polymerized at 60°C for 72 h. The resin
203	blocks containing the entire surgical site were trimmed to 2 mm \times 4 mm in size, and the surfaces
204	of the embedded specimens were exposed using a diamond knife. Ultrastructural
205	photomicrographs of various regions at the surgical sites, as material contrast images resembling
206	transmission electron microscopy images referred to as block face images [19], were obtained
207	from the block surface of the same specimen using LV-SEM. The images were obtained under
208	the following conditions: accelerating voltage = 2 kV, dwell time = 30 μ seconds, and image size

 $= 2048 \times 1768.$ 209

210

212	Statistical analysis was performed by using JMP version 11 (SAS Institute Inc., Cary,
213	NC, USA). Kruskal–Wallis test with the Wilcoxon test as a <i>post-hoc</i> analysis was used to
214	evaluate lidocaine and control groups by comparing cell proliferation and viability. Two-way
215	ANOVA test of variance with the Wilcoxon test as a <i>post-hoc</i> analysis was used to evaluate
216	biomechanical data and picrosirius red staining (gray scale). Values were shown as mean \pm
217	standard deviation (SD). Differences with a P value <0.05 were considered to be significant.
218	

- 219Results
- 220**Cell Proliferation**

221	When the values in the control group were defined as 100%, the relative ratio

- (lidocaine/control) was 97.7% for 0.001% lidocaine, 95.6% for 0.01% lidocaine, 85.2% for 222
- 0.05% lidocaine, and 68.2% for 0.1% lidocaine (Figure 3a). Thus, lidocaine significantly 223
- decreased cell proliferation of the cultured human tenocytes in a dose-dependent manner (P <224

0.05). 225

227	Cell Y	Viability
-----	--------	-----------

228	Under exposure to 0.1% lidocaine for 24 h, the FACS quantification analysis showed
229	significantly decreased cell viability in the lidocaine groups (% live cells, 75.0 ± 7.0) relative to
230	that in the control groups (% live cells: 86.9 ± 8.0) (Figure 3b).
231	
232	Biomechanical Strength
233	All specimens tested failed at the site of the SSp tendon tear. The ultimate load to failure
234	values (lidocaine vs. control group) were 11.5 ± 3.5 N and 21.4 ± 2.5 N at 2 weeks after surgery
235	($P < 0.05$), 17.5 ± 3.1 N and 22.2 ± 2.1 N at 4 weeks after surgery ($P < 0.05$), and 23.3 ± 4.0 N
236	and 29.8 ± 8.1 N ($P = 0.13$) at 8 weeks after surgery (Figure 4a). Thus, significant differences
237	between the 2 groups were noted at 2 and 4 weeks after surgery.
238	The stiffness values (lidocaine vs. control group) were as follows: 9.9 ± 6.1 N/mm and
239	19.6 ± 6.3 N/mm at 2 weeks after surgery ($P < 0.05$), 15.5 ± 4.0 N and 18.0 ± 2.6 N at 4 weeks
240	after surgery ($P = 0.3$), and 27.1 ± 8.2 N and 30.8 ± 12.1 N at 8 weeks after surgery ($P = 0.42$)
241	(Figure 4b). Thus, significant differences between the 2 groups were noted only at 2 weeks after
242	surgery.
243	

244 Evaluation of Fibrovascular Tissue at the Torn Site

245	Two weeks after surgery, the abundant fibro-vascular tissue from the extra-articular side
246	encroached on the torn tendons in both groups. Compared with the control group, the thickness
247	of the fibro-vascular tissue was relatively lesser in the lidocaine group, with irregular collagen
248	bundles and less cellularity. These changes continued till 4 weeks after surgery, but no apparent
249	difference was seen 8 weeks after surgery.
250	
251	Evaluation of the Collagen Organization at the Torn Site
252	Extent of the collagen organization at the torn site (lidocaine vs. control) was
253	significantly lesser in the lidocaine group: the gray scale values were 32.0 ± 19.0 and 49.9 ± 27.9
254	at 2 weeks after surgery ($P < 0.05$) and 41.0 ± 15.1 and 57.7 ± 22.9 at 4 weeks after surgery ($P < 0.05$)
255	0.05); however, there was no significant difference in the values at 8 weeks after surgery
256	(lidocaine vs. control: gray scale values of 66.3 ± 25.5 and 68.4 ± 27.4) ($P = 0.82$) (Figures 5a,
257	5b, 5c).
258	
259	Apoptotic Cells at the Torn Site
260	In the tendon specimens 24 h after surgery, a large number of TUNEL-positive cells
261	were observed in the lidocaine group (Figure 6a) but not in the control group (Figure 6b).
262	

263	Apoptotic Cells at the Torn Site Evaluated at the Ultrastructural Level
264	In the tendon specimens 24 h after surgery, segmentalized collagen fibrils and
265	condensed nuclei of the tenocytes were observed at the edge of the torn tendon where lidocaine
266	was directly injected (Figure 7a). In contrast, these findings were not evident in the control
267	group. (Figure 7b)
268	
269	Discussion
270	The delayed organization of collagen fiber in the rat rotator cuff tear model used in this
271	study showed that lidocaine significantly inhibited cell proliferation and caused cell death in
272	tenocytes from torn human rotator cuff and that lidocaine induced apoptosis, collagen necrosis,
273	and decreased biomechanical strength at the tear site. Thus, this study showed that lidocaine
274	caused adverse effects on tenocytes in torn rotator cuff tendons.
275	In vitro studies [21-24] have demonstrated considerable local anesthetic toxicity on
276	various cell types, including tendon fibroblasts derived from bovine tendon [3] and torn human
277	rotator cuff tendons [5]. Recently, an in vitro study revealed the cytotoxic mechanism of
278	aminoamide local anesthetics acting on human rotator cuff tendon fibroblasts [5]. That study
279	evaluated the response of tendon fibroblasts to ropivacaine, bupivacaine, and lidocaine and found
280	that these anesthetics caused cell death that was mediated by increased production of reactive

281	oxygen species. The reactive oxygen species resulted from increased activation of extracellular
282	signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 and by activation of caspase-3/7
283	[5]. Similarly, the <i>in vitro</i> experiments in the present study showed cytotoxic effects of lidocaine
284	on the tenocytes derived from human rotator cuff tendons.
285	Regarding the <i>in vivo</i> effects of local anesthetics on tendons, only a few reports have
286	addressed this topic. Lehner et al. showed that 0.5% bupivacaine elicited a temporary functional
287	damage after a single peritendinous injection on rat Achilles tendon and demonstrated cell
288	apoptosis at the injection site [2]. Friel et al. evaluated the effect of continuous subacromial
289	0.25% bupivacaine infusion on repaired SSp tendons in a rabbit rotator cuff repair model, and no
290	significant differences in the biomechanical and histological features were found between the
291	bupivacaine-treated and control groups [25]. In our rat cuff tear model, a single injection of 1.0%
292	lidocaine caused apoptotic changes in tenocytes 24 h after surgery and delayed organization at
293	the tear site by 4 weeks after surgery. These discrepancies appear to be either related to
294	differences in the animal models or the concentrations of local anesthetics used in these studies.
295	Unlike the "cuff tear" model in the present study or the "peritendinous injection" model
296	reported by Lehner et al. [2], a "tear and subsequent repair" model [26,27] may not have
297	predisposed tenocytes to be exposed at sufficient levels of concentration because the cells are
298	protected/covered by tendon repair. In contrast, the "cuff tear" model in the present study may

299	have caused relatively high-concentration exposure to the tenocytes, and this may also have
300	occurred in the "peritendinous injection" model [2], in which the agents were potentially injected
301	into the tendinous portion. Previous in vitro studies have demonstrated that local anesthetics
302	inhibited cell proliferation and/or viability in a dose-dependent manner [4,23,28]. Thus, the
303	milieu of the injection site seems to directly determine the effects of local anesthetics; in fact, in
304	the present study, the tenocytes at the edge of the tear site that were directly exposed to lidocaine,
305	but not the cells exposed to PBS (control), underwent apoptotic changes.
306	We previously demonstrated the healing capability of torn tendon edges in patients with
307	rotator cuff tears by detecting procollagen types I and III gene expression in the tendon
308	fibroblasts [29-32]. These procollagen gene expression levels at the edge of the torn tendon
309	significantly correlated with re-tear after surgery [29]. In the present study, significant decrease
310	in the ultimate load to failure and delay of collagen organization in the lidocaine group continued
311	at 4 weeks after surgery. In a randomized, double-blind, prospective study, the accuracies of
312	landmark- and ultrasound-guided injections were 70% and 65%, respectively, for subacromial
313	space ($P < 0.05$) [33-34]. Taking these into considerations, lidocaine administration into the
314	subacromial space may affect the tenocytes when directly injected into the tendon mid-
315	substance; therefore, careful administration of lidocaine is necessary before operation.
010	

317 Limitations

318	There were some limitations in this study. First, an acute rotator cuff tear rat model was
319	used, which is not applicable to humans with chronic tendinopathy; hence, caution is required
320	when applying the results from the rat model to human clinical situations. Second, the spectrum
321	of the lidocaine concentrations evaluated was narrow. The stumps of human rotator cuff tears are
322	usually covered by fibrin [35]; therefore, the cells may not be exposed to the same concentrations
323	as used in the present study as long as the lidocaine is not injected intratendinously. Third, the
324	influence of lidocaine combined with steroids that are frequently used in subacromial injections
325	was not examined. Fourth, cultured cells from uninjured tendons were used in the present study,
326	which may have had much greater variability similar to the variability in the clinical
327	presentation. Fifth, the present study was an observational study because the pathway
328	mechanisms were not examined. Sixth, the possibility of a phenotype change could not be
329	completely excluded because the cells behaved differently once they dissociated from their
330	native extracellular matrix. Seventh, we evaluated load and stiffness but not material properties
331	(e.g., stress, modulus), which may add significant uncertainty to the interpretation of findings.
332	Eighth, the sample size in this study was small, which may have caused a type II statistical error.
333	Resolution of these issues would add clarity to our study findings.

335 Conclusions

336	This study showed that lidocaine caused cytotoxicity to the tendon fibroblasts in vitro
337	and decreased the biomechanical properties in a rat rotator cuff tear model, inducing apoptosis
338	and delaying collagen organization at the tear site. The effect of significant decrease in
339	biomechanical strength with delayed tissue reorganization continued at 4 weeks after surgery;
340	thereafter, biomechanical strength with delayed tissue reorganization returned to baseline levels
341	by 8 weeks after surgery. Although the rat model used in the present study may not be fully
342	representative of clinical settings, we think that subacromial lidocaine injections in patients with
343	rotator cuff tears should be carefully administered before operations.
344	
345	
346	Acknowledgments:
347	We would like to express our gratitude and appreciation to Ms. Marina Sakata for her technical
348	assistance.

350 References	
-----------------------	--

351	1. Toker S, Kilinçoğlu V, Aksakalli E, et al. 2008. Short-term results of treatment of tennis
352	elbow with anti-inflammatory drugs alone or in combination with local injection of a
353	corticosteroid and anesthetic mixture. Acta Orthop Traumatol Turc 42: 184–187. [Article in
354	Turkish]
355	
356	2. Hashiuchi T, Sakurai G, Morimoto M, et al. 2011. Accuracy of the biceps tendon sheath
357	injection: ultrasound-guided or unguided injection? A randomized controlled trial. J Shoulder
358	Elbow Surg 20: 1069–1073.
359	
360	3. Jeyapalan K, Choudhary S. 2009. Ultrasound-guided injection of triamcinolone and
361	bupivacaine in the management of De Quervain's disease. Skeletal Radiol 38: 1099–1103.
362	
363	4. Hart L. 2011. Corticosteroid and other injections in the management of tendinopathies: a
364	review. Clin J Sport Med 21: 540–541.

366	5. Crisp T, Khan F, Padhiar N, et al. 2008. High volume ultrasound guided injections at the
367	interface between the patellar tendon and Hoffa's body are effective in chronic patellar
368	tendinopathy: A pilot study. Disabil Rehabil 30: 1625–1634.
369	
370	6. Chan O, O'Dowd D, Padhiar N, et al. 2008. High volume image guided injections in chronic
371	Achilles tendinopathy. Disabil Rehabil 30: 1697–1708.
372	
373	7. Farshad M, Jundt-Ecker M, Sutter R, et al. 2012. Does subacromial injection of a local
374	anesthetic influence strength in healthy shoulders?: a double-blinded, placebo-controlled study. J
375	Bone Joint Surg Am 94: 1751–1755.
376	
377	8. Lehner C, Gehwolf R, Hirzinger C, et al. 2013. Bupivacaine induces short-term alterations and
378	impairment in rat tendons. Am J Sports Med 41: 1411–1418.
379	
380	9. Piper SL, Laron D, Manzano G, et al. 2012. A comparison of lidocaine, ropivacaine and
381	dexamethasone toxicity on bovine tenocytes in culture. J Bone Joint Surg Br 94: 856-862.
382	
383	10. Yang SL, Zhang YB, Jiang ZT, et al. 2014. Lidocaine potentiates the deleterious effects of 22

triamcinolone acetonide on tenocytes. Med Sci Monit 20: 2478–2483.

386	11. Sung CM, Hah YS, Kim JS, et al. 2014. Cytotoxic effects of ropivacaine, bupivacaine, and
387	lidocaine on rotator cuff tenofibroblasts. Am J Sports Med 42: 2888-2896.
388	
389	12. Sconfienza LM, Viganò S, Martini C, et al. 2013. Double-needle ultrasound-guided
390	percutaneous treatment of rotator cuff calcific tendinitis: tips & tricks. Skeletal Radiol 42: 19-24.
391	
392	13. Farshad M, Jundt-Ecker M, Sutter R, et al. 2012. Does subacromial injection of a local
393	anesthetic influence strength in healthy shoulders?: a double-blinded, placebo-controlled study. J
394	Bone Joint Surg Am 94: 1751–1755.
395	
396	14. Coghlan JA, Forbes A, Bell SN, Buchbinder R. 2008. Efficacy and safety of a subacromial
397	continuous ropivacaine infusion for post-operative pain management following arthroscopic
398	rotator cuff surgery: A protocol for a randomised double-blind placebo-controlled trial. BMC
399	Musculoskelet Disord 9: 56.

401	15. Coghlan JA, Forbes A, McKenzie D, et al. 2009. Efficacy of subacromial ropivacaine
402	infusion for rotator cuff surgery. A randomized trial. J Bone Joint Surg Am 91: 1558–1567.
403	
404	16. Gulotta LV, Kovacevic D, Packer JD, et al. 2011. Bone marrow-derived mesenchymal stem
405	cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med 39:
406	1282–1289.
407	
408	17. Gulotta LV, Kovacevic D, Enteshami JR, et al. 2009. Application of bone marrow-derived
409	mesenchymal stem cell in a rotator cuff repair model. Am J Sports Med 37: 2126–2133.
410	
411	18. Cohen DB, Kawamura S, Ehteshami JR, Rodeo SA. 2006. Indomethacin and celecoxib
412	impair rotator cuff tendon-to-bone healing. Am J Sports Med 34: 362–369.
413	
414	19. Hettrich CM, Rodeo SA, Hannafin JA, et al. 2011. The effect of muscle paralysis using
415	Botox on the healing of tendon to bone in a rat model. J Shoulder Elbow Surg 20: 688–697.
416	
417	20. Hettrich CM, Gasinu S, Beamer BS, et al. 2014. The effect of mechanical load on tendon-to-
418	bone healing in a rat model. Am J Sports Med 42: 1233–1241.

420	21. Rahnama R, Wang M, Dang AC, et al. 2013. Cytotoxicity of local anesthetics on human
421	mesenchymal stem cells. J Bone Joint Surg Am 95: 132–137.
422	
423	22. Breu A, Rosenmeier K, Kujat R, et al. 2013. The cytotoxicity of bupivacaine, ropivacaine,
424	and mepivacaine on human chondrocytes and cartilage. Anesth Analg 117: 514-522.
425	
426	23. Breu A, Eckl S, Zink W, et al. 2013. Cytotoxicity of local anesthetics on human
427	mesenchymal stem cells in vitro. Arthroscopy 29: 1676–1684.
428	
429	24. Cai XY, Xiong LM, Yang SH, et al. 2014. Comparison of toxicity effects of ropivacaine,
430	bupivacaine, and lidocaine on rabbit intervertebral disc cells in vitro. Spine J 14: 483-490.
431	
432	25. Friel NA, Wang VM, Slabaugh MA, et al. 2013. Rotator cuff healing after continuous
433	subacromoal bupivacaine infusion: an in vivo rabbit study. J shoulder Elbow Surg 22: 489-499.
434	
435	26. Valencia Mora M, Antuna Antuna S, García Arranz M, et al. 2014. Application of adipose
436	tissue-derived stem cells in a rat rotator cuff repair model. Injury 45: S22–27.

438	27. Fox AJ, Schar MO, Wanivenhaus F, et al. 2014. Fluoroquinolones impair tendon healing in a
439	rat rotator cuff repair model: a preliminary study. Am J Sports Med 42: 2851–2859.
440	
441	28. Kim RJ, Hah YS, Kang JR, Park HB. 2015. An antioxidant's cytoprotective effects on rotator
442	cuff tenofibroblasts exposed to aminoamide local anesthetics. J Orthop Res 33: 1001–1007.
443	
444	29. Shirachi I, Gotoh M, Mitsui Y, et al. 2011. Collagen production at the edge of ruptured
445	rotator cuff tendon is correlated with postoperative cuff integrity. Arthroscopy 27: 1173–1179.
446	
447	30. Gotoh M, Mitsui Y, Shibata H, et al. 2013. Increased matrix metalloprotease-3 gene
448	expression in ruptured rotator cuff tendons is associated with postoperative tendon retear. Knee
449	Surg Sports Traumatol Arthrosc 21: 1807–1812.
450	
451	31. Hamada K, Tomonaga A, Gotoh M, et al. 1997. Intrinsic healing capacity and tearing process
452	of torn supraspinatus tendons: In situ hybridization study of $\alpha 1(I)$ procollagen mRNA. J Orthop
453	Res 15: 24–32.

32. Tomonaga A, Hamada K, Gotoh M, et al. 2000. Expression of procollagen α1 type iii mRNA
in rotator cuff tears. Tokai J Exp Clin Med 25: 125–134.

457

- 458 33. Aly AR, Rajasekaran S, Ashworth N. 2014. Ultrasound-guided shoulder girdle injections are
- 459 more accurate and more effective than landmark-guided injections: a systematic review and
- 460 meta-analysis. Br J Sports Med 49: 1042–1049.

461

- 462 34. Dogu B, Yucel SD, Sag SY, et al. 2012. Blind or ultrasound-guided corticosteroid injections
- 463 and short-term response in subacromial impingement syndrome: a randomized, double-blind,
- 464 prospective study. Am J Phys Med Rehabil 91: 658–665.

465

- 466 35. Yamanaka K, Fukuda H. 1991. Surgical disorders of the shoulder. In: Watson MS, editor.
- 467 Ageing process of the supraspinatus tendon with reference to rotator cuff tears, 1st ed. London:
- 468 Churchill Livingstone; p 247–258.

470	Figure Legends	
-----	----------------	--

471	Figure	1
	.	

- 472 Flow diagram showing how the rats were allocated into the 2 groups and into each experiment
- 473 LD: Lidocaine, Cont: Control, MT: Mechanical testing, Histo: Histological analysis, SEM:
- 474 Scanning electron microscopy
- 475

```
476 Figure 2
```

477 (a): Photograph showing the supraspinatus tendon tear made on the rat shoulder

478 (b): Scheme of the supraspinatus tendon tear

- 479 SSC: Subscapularis tendon, SSP: Supraspinatus tendon, ISP: Infraspinatus tendon, C: Cartilage,
- 480 M–T: Muscle–tendon junction
- 481
- 482 (c): Photograph showing the biomechanical testing device
- 483

484 Figure 3

- 485 (a): Effects of lidocaine under various concentrations (0.001%–0.1%) on cell proliferation
- 486 The histogram shows the mean tenocyte proliferation (%). Error bars represent the standard
- 487 deviation. The asterisk indicates a significant difference (P < 0.05).

488	(b): Effects of	0.1% lidocaine or	n cell viability
-----	-----------------	-------------------	------------------

489 The histogram shows the mean tenocyte viability (%). Error bars represents the standard

490 deviation. The asterisk indicates a significant difference (P < 0.05).

491

492 Figure 4

- 493 (a): Histogram showing the mean ultimate load to failure (N)
- 494 Error bars represent the standard deviation. The asterisk indicates a significant difference (P <

495 0.05).

- 496 (b): Histogram showing the mean stiffness (N/mm)
- 497 Error bars represent the standard deviation. The asterisk indicates a significant difference (P <

498 0.05).

499

500 Figure 5

- 501 Picrosirius red staining at the tear site
- 502 (a): Photograph showing the lidocaine-exposed tear site 4 weeks after surgery
- 503 (b): Photograph showing the phosphate-buffered saline-exposed tear site 4 weeks after surgery

504 (Control).

505 (c): Comparison of collagen organization between the lidocaine and control groups 2, 4, and 8

506	weeks	after	surgery
-----	-------	-------	---------

507 Error bars represent the standard deviation. The asterisk indicates a significant difference (P <

508 0.05).

509

- 510 **Figure 6**
- 511 TUNEL staining at the tear site 24 h after surgery
- 512 (a): Lidocaine group
- 513 (b): Control group
- 514

515 **Figure 7**

516 Apoptotic cells at the tear site 24 h after surgery evaluated by scanning electron microscopy

517 (a): Lidocaine group

518 (b): Control group

- 520
- 521